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ABSTRACT

 

Many important and useful applications for software agents
require multiple agents on a network that communicate with
each other. Such agents must find each other and perform a
useful joint computation without having to know about every
other such agent on the network. This paper describes a

 

matchmaker

 

 system, designed to find people with similar in-
terests and introduce them to each other. The matchmaker is
designed to introduce 

 

everyone

 

, unlike conventional Internet
media which only allow those who take the time to 

 

speak

 

 in
public to be known.

The paper details how the agents that make it up the match-
making system can function in a decentralized fashion, yet
can group themselves into clusters which reflect their users’
interests; these clusters are then used to make introductions or
allow users to send messages to others who share their inter-
ests. The algorithm uses 

 

referrals

 

 from one agent to another
in the same fashion that word-of-mouth is used when people
are looking for an expert. A prototype of the system has been
implemented, and results of its use are presented.
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INTRODUCTION

 

Software

 

 

 

agents

 

 are computer programs which attempt to per-
form some set of tasks autonomously for their users, in a
trustworthy, personalized fashion. They can be either manu-
ally programmed by the user, or use techniques from machine
learning to discover how the user does some task and gradu-
ally automate it. Examples include mail filtering programs,
which learn or are told whose mail is valued and whose is not
[9][10]; meeting scheduling programs, which learn or are told
when and with whom to schedule meetings and how flexible
to be in negotiating (with other agents) for times depending
on who else is in the meeting [7]; and so forth. Many software
agents are even designed to be primarily entertaining, perhaps
with ancillary practical or informative goals [3][11].

Other agents take more initiative; they actively inform the
user when they find items that match the user’s known inter-
ests. Often, such agents may not understand the domain of in-
terest directly, but are instead facilitators that can find 

 

other
people

 

 who understand the domain better who can advise.

 

Automated collaborative filtering

 

, in which users with similar

tastes are matched up, is used in systems such as Web-
hound[9] or HOMR/Ringo [14].

While the two agents above match up users’ tastes to make
recommendations, their focus is not explicitly to matchmak-
ing users and introducing them to each other. The research
described in this paper is focussed on introducing users who
are interested in similar topics. There are a number of reasons
why one might want to do this:

• People are often working on similar projects without real-
izing it—be it two people down the hall from each other
reinventing the same wheel, or two doctors both doing re-
search on similar cases but having no idea that both of
them are studying the same literature.

• It is often the case that people need to find an expert in
some field, but finding such an expert can be difficult and
time-consuming. Those who are not well “plugged-in”
via word of mouth can find this even more difficult.

• There is potential for a great deal of social collaboration
on the Internet, but it is often underutilized. “Lurkers”
who read but do not post to mailing lists or newsgroups,
for example, are an undiscovered resource to the commu-
nity, invisible because they do not contribute to public
discussion.

Current communications systems on the Internet are not well-
designed for this sort of matchmaking. In almost all media on
the Internet, only people who take the time to write a piece of
prose and transmit it somewhere, whether by mail, news, or
making a Web page, are ever seen by anyone else. Two peo-
ple who are both working on the same problem, or who share
an interest, may never know if they themselves are not actu-
ally writing about it. The matchmaking system described here
is designed to aid these “lurkers” who are not part of the pub-
lic discussion nonetheless find each other and establish a
community.

 

Why having multi-agent systems helps

 

Many currently-implemented agents use a 

 

centralized

 

 archi-
tecture, in which one agent serves either one or many users.
A centralized architecture has its advantages: for example, if
there is no effective way for peers to find each other, a cen-
tralized solution may be the only workable solution. Unfortu-
nately, there are problems with a centralized architecture:
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• Scaling such an architecture to large numbers of users is
difficult; in systems which must correlate user interests,
for example [14], straightforward approaches to this prob-
lem generally require a quadratic-order matching step
somewhere.

• If the system requires either high availability (due to con-
stant demand for its services) or high trustability (because
it handles potentially sensitive information, such as per-
sonal data), a centralized server provides a single point
where either accidental failure or deliberate compromise
can have catastrophic consequences.

For these reasons and others, many foreseeable future appli-
cations for software agents involve large numbers of agents
interacting with each other. Users may have a number of
agents operating on their behalf, and agents of any particular
user may have to communicate with other agents elsewhere
on the network in order to share information.

 

Why multi-agent systems are hard to build

 

While decentralized, multi-agent systems have several im-
portant advantages, one of the largest problems with them is

 

how agents are supposed to find each other. 

 

Each agent
should not have to know about (and, indeed, probably cannot
know about) every other agent, user, or resource on the net-
work. Instead, some mechanism by which agents may locate
only the useful agents on the network must be arranged.

There are several relatively straightforward approaches that
have been used in other networked systems. For example, hi-
erarchical organization of the entities, as is done with re-
source records in the Internet domain name system [12] or
with newsgroup topics in the Usenet [4], can help to reduce
the inherently quadratic problem into a logarithmic one.
However, such approaches depend on some inherent organi-
zational principle that is established in advance, which is nei-
ther always optimal nor always convenient; for example, con-
sider the number of crossposted Usenet articles, a clear indi-
cation that single-inheritance hierarchies are not necessarily a
good match to the underlying topic space.

This research focuses on the problems of a 

 

matchmaking 

 

ser-
vice, one designed to find groups of people with similar inter-
ests and bring them together to form coalitions and interest
groups. We are 

 

not

 

 explicitly interested here in romantic
matchmaking between users, for many reasons—the most ob-
vious being that shared interests do 

 

not

 

 necessarily mean that
two people are romantically compatible. The intended scale
of the matchmaking is that of the entire Internet, an environ-
ment in which there are potentially millions of users and mil-
lions of agents corresponding to them. The domain and the
large number of agents presents difficult coordination prob-
lems, such as: 

• there is no obvious a priori hierarchy by which to organize
the agents (why would any one person’s interests be at the
top of any hierarchy? how would we know whom to pick,
anyway?);

• asking other agents 

 

at random

 

 resembles diffusion in a
gas and is extremely slow—it means each agent could be
required to ask every agent on the network, guaranteeing

a solution that scales poorly; and

• a centralized approach runs into the problems mentioned
above of quadratic scaling, and also is subject to single-
point-of-failure problems if the central system either fails
or is compromised—an important point for an application
handling potentially sensitive data.

 

Finding the right cluster of peer agents: the core idea

 

To address these problems, this research considers an overall
organization which borrows ideas from 

 

computational ecolo-
gy

 

 [5], in which agents have only local knowledge, but self-
organize into larger units. The 

 

core ideas

 

 in the approach tak-
en here are to

• compare the agents’ information in a 

 

peer-to-peer, decen-
tralized

 

 fashion,

• use 

 

referrals

 

 from one agent to another and an algorithm
resembling 

 

hill-climbing 

 

to find other, more appropriate
agents when searching for relevant peers, in order to

• build 

 

clusters

 

 or 

 

clumps

 

 of like-minded agents, and to

•

 

use these clusters

 

 of similar or like-minded agents (whose
users therefore share similar interests) to 

 

introduce

 

 users
to each other and enable cluster-wide 

 

messaging

 

 between
users whose interests match.

• use a 

 

persistent

 

 agent that runs most of the time, for long
periods; the user does not start up the agent, get an imme-
diate result, and shut it down, but instead runs it in the
background for hours or weeks, while it uses “word of
mouth” to find and join appropriate groups of agents
whose users share the same interests.

 

How the resulting clusters can be used

 

Once agents have formed clusters—an ongoing and continu-
ous process for real agents on the Internet, due to the scale
and constantly-changing environment involved—how can
we use these clusters? There are many applications; this is a
short summary:

 

• Messaging into the group.

 

 A user whose agent is in some
particular group can send a message into the group—ei-
ther those other agents known directly by the user’s agent
to be in the same cluster, or transitively through all other
agents in the cluster by following cluster cache informa-
tion in a flooding algorithm. Thus, given some particular
granule on the user’s local agent, the user could ask his
agent to send a message to all other agents in the clump of
which this granule is a member.

 

• Introductions. 

 

The chain of referrals themselves can be
useful information, and can be exposed to the user under
certain circumstances. Not only can the user send mes-
sage to particular individuals (whether pseudonymously
or not), but the agent itself can facilitate a “flirtatious” sort
of introduction in which information can be symmetrical-
ly and gradually revealed, via cryptographic protocols.
Users could ask for an explicit introduction to particular
members of the cluster, or could instruct their agent to ac-
cept or solicit introductions when it looked like there was
a particularly good match available.
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• Finding an expert.

 

 By using a combination of messaging
into the group and introductions, the clusters that a user’s
agent finds itself in can potentially be used to find experts
on the subject, since presumably such experts (if they,
too, are running the agent) will have their interests reflect-
ed in the clustering. Here, a user could prepare a small
piece of prose, or find some existing message, which talks
about the subject for which the user wants an expert; the
clustering algorithm could then generate a granule for this
grain and attempt to find a suitable cluster. Once found, it
could start the introduction process to acquaint the ques-
tioner and the expert.

 

What is described in this paper

 

The following sections describe the algorithm used in a pro-
totype of the clustering system, the testing used to evaluate its
performance, and how this work is integrated into the larger
goal of automatically building interest groups and coalitions
on the Internet.

Note that the algorithms described below are but a small
piece of the overall task. In particular, since the system han-
dles sensitive information such as people’s interests, fielding
the system on the Internet requires cryptographic privacy
safeguards briefly described elsewhere [1][2] and which are
the subject of current research. Furthermore, as an initial pro-
totype for testing the efficacy of clustering, no user interface
is described. The entire system, including such cryptographic
safeguards, a user interface, and other necessary elements, is
called 

 

Yenta

 

; to avoid confusion, the prototype piece de-
scribed here is called 

 

Yenta-Lite 

 

or 

 

YL

 

 for short.

 

THE APPROACH

 

The overall goal is to form clusters of agents whose users
share similar interests. In order to do this, we must answer the
following questions:

• What does it mean to have an interest, and how do agents
know about these interests?

• How do we determine similarity of interests?

• How does a particular agent know which other agents to
contact?

• How can we form clusters of similar agents?

 

What does it mean for a user to have an interest, and 
how do we capture that computationally?

 

For the purposes of matching people by their interests, we as-
sume that these interests are 

 

capturable

 

 in some computer-
based form. At the moment, Yenta only deals with text, such
as electronic mail messages, the contents of various news-
group articles, the contents of the user’s files in a filesystem,
and so forth. The architecture of Yenta supports somewhat
different sources of information as well (such as World Wide
Web hotlists and homepages)—the crucial requirements for
any interest are 

 

a) 

 

they are represented in some electronic
form, hence captured by the computer, and 

 

b)

 

 there is some
way of comparing two potential interests and assigning a 

 

de-
gree of similarity

 

 between them.

As currently implemented, Yenta-Lite can examine the con-
tents of email messages, newsgroup articles, and user files

that the user has received, read, or written. The tests described
in this paper used 

 

newsgroup articles

 

 and 

 

email messages

 

only, as discussed in the section on evaluating Yenta-Lite’s
performance. Each individual message, article, or file being
compared is considered a 

 

document

 

; however, since Yenta
might eventually be comparing nontextual documents, we
use the term 

 

grain

 

 to refer to any individual chunk of bits as-
sociated with a user.

A user is deemed to 

 

have

 

 an interest if several grains are 

 

sim-
ilar

 

 to each other. Such a collection of similar grains is called
a 

 

granule

 

. A user may own many granules, each correspond-
ing to some separate interest; for example, a user who regu-
larly reads newsgroup articles on dogs and cars would pre-
sumably have two granules reflecting these disparate inter-
ests.

Two users, A and B, are deemed to 

 

share

 

 an interest if A has
at least one granule that is similar to at least one of B’s gran-
ule. Two or more users who share an interest are 

 

conceptually

 

in a 

 

cluster 

 

at the instant that they both possess similar gran-
ules; they are 

 

actually

 

 in clump at the instant their two agents
discover this similarity. A diagram illustrating this is below.

Suppose we have three users, A, B, and C. Suppose that A and
B are in a clump, and B and C are in a clump. Are A, B, and
C all in a clump together? Not necessarily. If A is interested
in dogs and cars, his associated granules are A

 

dogs

 

 and A

 

cars

 

.
If the other granules are B

 

dogs

 

, B

 

zebras

 

, C

 

dogs

 

, and C

 

guitars

 

,
then A, B, and C are all in a clump, because they all share an
interest in dogs. However, if C

 

dogs

 

 was instead C

 

zebras

 

, then
we have two clumps, one reflecting A and B’s interests in

grain
grain

grain
grain

grain

grain

grain

grain
grain

grain

Agent #1

Agent #2

granule

granule

granule

c luster
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dogs, and one reflecting B and C’s interest in zebras. B in this
case is in two clumps, while A and C are each in one clump.

 

How do we determine similarity of interests?

 

The fundamental assumption behind Yenta’s assessment user
similar of user interests is this: If two users both have several
documents which are similar to each other, then the users are
assumed to share an interest themselves.

In order to function at all, Yenta demands that any two grains
can be compared to yield some measure of similarity. It is
also required that this measure be (at least) partially-ordered;
a floating-point number, for example, which reflects how
similar two grains are is an acceptable representation. The
Yenta architecture allows more sophisticated similarities than
scalar numbers, but Yenta-Lite, and the results reported here,
use only scalars. At the moment, it is also assumed that this
comparison operator is reflexive, e.g., that if A’s similarity to
B is 0.74, then B’s similarity to A is likewise 0.74. Future
work may explore the stability of the clustering algorithm in
the face of nonreflexive comparison operators.

Since Yenta-Lite’s grains are all exclusively textual, we use
the SMART [15] document system to compare them.
SMART is designed primarily to index and retrieve docu-
ments from large collections. It has many possible modes of
operation; in our use, SMART first stems all words in any
given document (e.g., removes prefixes and suffixes and oth-
erwise canonicalizes the text), computes an inverse-frequen-
cy metric for each word in the document (so that rare words
with greater power to discriminate two documents from each
other have greater weight than common words which appear
in most documents), and computes a vector which describes
the document based on these.

When used to index into a large collection of documents,
SMART normally takes a query, computes the vector associ-
ated with the query, and dots the resulting query vector with
the vectors corresponding to each document. Dot products
which have high scores are reported. In Yenta’s case, the que-
ry is itself a document; therefore, Yenta essentially takes
pairs of documents, dots them together, and assumes that high
scores indicate similarity.

This is not the only way to do this, of course. For example,
consider WordNet [13], which is a semantic net that allows
comparing words based on how many links away one word is
from another, and in what direction (e.g., synonym, antonym,
superset, etc). Future implementations of Yenta may combine
SMART and WordNet if the advantages (e.g., possibly more
resilience in the face of synonyms that rarely co-occur in a
single document) outweigh the disadvantages (e.g., greater
semantic “fuzz” in the comparison due to the greater number
of words investigated in any given document).

 

Forming clusters via referrals

 

We now come to the heart of the clustering algorithm. Given
that we have a multiplicity of agents with no central node and
no hierarchy, how can we reasonably form clusters which re-
flect the interests of the users?

The major steps (described in more detail) are:

• Intra-agent initialization, known as 

 

preclustering

 

: Com-
bine grains into granules within a single agent.

• Inter-agent initialization, known as 

 

bootstrapping

 

: Find at
least one other agent with which to communicate.

• Walk referrals and cluster: Form clusters of like-minded
agents.

 

Preclustering

 

When an agent first starts running, it must determine what in-
terests its user possesses. It does this by collecting some sub-
set of the user’s email, newsgroup articles, and files; each
such item is known as a 

 

grain

 

. Each separate grain is consid-
ered for membership in a growing collection of granules.

First, each grain is converted into a SMART vector. Next, a
complete cross-product table is created in which each grain’s
SMART vector is dotted with each other grain’s SMART
vector; each resulting dot-product 

 

p 

 

is an entry in the table.
This is an 

 

O(n

 

2

 

)

 

 operation, given that there are 

 

n

 

 grains in the
user’s collection. The result is a table in upper-triangular
form, with the main diagonal suppressed (since the main di-
agonal corresponds to comparing each grain to itself). We
then compute the mean, 

 

p,

 

 and the standard deviation  of all
of the 

 

nonzero

 

 entries in this table of 

 

p

 

 values. Typically, 60%
of the entries in the table are zero.

Next, a grain is picked at random to start the process of pre-
clustering into granules. It is assigned to the first granule, 

 

G

 

0

 

.
To grow 

 

G

 

0

 

, we pick a grain 

 

g

 

 not already in 

 

G

 

0

 

 and compare
it—by dotting SMART vectors together—to each grain al-
ready in 

 

G

 

0

 

; we compute the mean 

 

g

 

 of these dot products.
We repeat this process for all the other grains not in 

 

G

 

0

 

 and
remember 

 

g

 

best

 

, which is the best mean. Then, we see if

 

is true, where 

 

W

 

 is a weight described in the next paragraph.
If the relation is true, then the grain corresponding to 

 

g

 

best 

 

is
added to 

 

G

 

0

 

. When we have made a complete pass through all
documents not in 

 

G

 

0

 

, we take a document at random in the
leftovers and start trying to make granule 

 

G

 

1

 

.

The weight 

 

W

 

 is essentially a user-tunable variable. 

 

W = 1

 

implies that roughly 17% of the grains will pass this test when
compared to a randomly selected granule, since a weight of 1
corresponds to everything on the high side of one standard
deviation from the mean; that is:

.

This process of producing granules is relatively time-con-
suming (it has several 

 

O(n

 

2

 

)

 

 steps in it), but must be done
only once for any given collection of the user’s grains, and,
as shown later, it appears to produce acceptable results.

In true Yenta, it is assumed that the user will constantly be
adding grains to his collection as new messages come in or
new files are created; however, incrementalizing the algo-
rithm to cope with each added grain is relatively easy: we
compare each new grain with existing granules for member-
ship, adding it if it matches well. Otherwise, it is put aside
with the rest of the unmatched grains, and this pile of un-
matched grains is occasionally scanned to see if a large

σ

gbest Wσ( ) g+>

100% - 67%
2

------------------------------ 17%=
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enough number of grains are similar that they can form a new
granule.

 

Boostrapping

 

The next phase requires finding at least one other agent with
which to communicate; finding more after that is easier—due
to other agents’ rumor caches—in that it is less likely that we
will require either ad-hoc heuristics or user intervention. In
Yenta-Lite, we finess this problem and assume that we can al-
ways find another agent. Several heuristics are availabie for
true Yenta, including broadcasts and directed multicasts on
local network segments to find other agents in the same orga-
nization, asking a central registry which contains a 

 

partial

 

 list
of other known agents, and asking the user for suggestions.
All of these heuristics have various advantages and disadvan-
tages, but we shall not pursue them here.

 

Data structures used in finding referrals and clusters

 

We now come to the step in which the various granules in
agents form clusters with other granules. For concreteness,
assume that we have two agents, named A and B, which each
have a few granules in them, e.g., 

 

G

 

A0

 

, 

 

G

 

A1

 

, etc. Each agent
also contains several other data structures:

• A 

 

cluster cache, CC,

 

 which contains the names of all oth-
er agents currently known by some particular agent as be-
ing in the same cluster. Thus, if agent A knows that its
granule 1 is similar to granule 3 of agent B, then 

 

CC

 

A

 

 con-
tains a notation linking 

 

G

 

A1

 

 to 

 

G

 

B3

 

. There are two impor-
tant limits to the storage consumed by such caches: 

 

g

 

l

 

(“local granules”), the number of separate granules that
any given agent is willing to remember about itself; and

 

gr (“remote granules”), the number of granules this agent
is willing to remember about other agents. The total size
of CC is hence gl times gr. In Yenta-Lite, these are essen-
tially unbounded; in an implementation that wishes to
save space, limiting gr before limiting gl would seem to
make the most sense, as this limits the total number of
other agents that will be remembered by the local agent,
while not limiting the total number of disparate interests
belonging to the user that may be remembered by the lo-
cal agent.

• A rumor cache, RC, which contains the names and other
information (described below) from the last r agents that
this agent has communicated with. In Yenta-Lite, r is ar-
bitrarily set to 5, and it should definitely be bounded in
true Yenta as well, since otherwise any given agent will
remember all of the agents it has ever encountered on the
net and its storage consumption will grow without bound.
Reasonable values for bounds in real-life operation with
large numbers of agents are currently unknown, but are
suspected to be on the order of 20 to 100.

• A pending-contact list, PC, which is a priority-ordered
list of other agents that have been discovered but which
the local agent has not yet contacted.

The rumor cache contains more than just the names of other
agents encountered on the network. It also contains some sub-
set, perhaps complete, of the text of each granule correspond-
ing to those agents.

The stored granules themselves are essential for the referral
process. Having the complete text of each granule, or even
most of it, could represent a large amount of storage (e.g.,
100K or more per granule, depending on exactly what is in
any given granule). We do not just store the SMART vectors
because:

• The Yenta architecture does not require that the compar-
ison operator be able to handle a “reduced information”
representation of the two grains to be compared. SMART
happens to compare two documents by reducing them to
a pair of vectors before dotting them together, but other
comparison operators might not produce such a compact
representation as part of their operation.

• The Yenta architecture does not enforce a requirement
that each agent be running identical software, and indeed
expects that any given pair of agents may be running
slightly different versions, including different comparison
functions. There is no telling a priori whether some re-
duced-information representation of a particular grain
will be correct for two different comparison operators.

Note that one might allow the user to choose a reduced-
information version of each granule, accepting the re-
duced performance that would result when other agents
give up on interoperating with the local agent when they
discover that their comparison operators differ.

• Having the complete text of each granule represents more
than a space penalty—it also represents a serious privacy
problem if some particular agent were to be maliciously
modified to disgorge both the contents and identity of
some remote agent. In true Yenta (but not Yenta-Lite),
this is ameliorated using cryptographic protocols to hide
information, even in the cache, and also to hide identities
of the remote agents.

Getting referrals and doing clustering

Now that we have all this mechanism in place, performing re-
ferrals and clustering is relatively uncomplicated.

The process starts when some agent (call it A) has finished
preclustering and has found at least one other agent (call it B)
via bootstrapping. Agent A then performs a comparison of its
local granules with those of agent B, using a process reminis-
cent of the preclustering phase but simplified. A builds an up-
per-triangular matrix describing the similarities between each
of its local granules and those locally held by B. Then, rather
than taking averages and standard deviations, it simply finds
the highest score (e.g., closest similarity) between any given
granule (say, GA1) and B’s granules. If there is no such value
above a particular threshold, then the local granule under con-
sideration does not match any of B’s granules, although some
other local granule, e.g., GA2, might match.

The comparison process is simpler in the clustering (inter-
agent) phase than in the preclustering (intra-agent) phase in
part because two agents talking to each other cannot assume
that they have complete information about either each other
or the space of all possible other granules on the network.
Thus, we do not bother trying to calculate averages and stan-
dard deviations; as observed in the prototype, a simpler,
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threshold-based match appears to work well enough.

When we are done comparing granules from A with granules
from B, agent A may have found some acceptably close
matches. Such matches are entered, one pair of granules at a
time, in A’s cluster cache. B is likewise doing a comparison
of its granules with A and is entering items in its own cluster
cache.

Whether or not any matches were found that were good
enough to justify entering them in a cluster cache, the next
step is to acquire referrals to agents that might be better
matches. In the example here, agent A asks agent B for the en-
tire contents of its rumor cache, and runs the same sort of
comparison on those contents that it did on agent B’s own lo-
cal granules. Good matches are added to A’s cluster cache,
the rest of the data is added to A’s rumor cache, and A’s
namelist is updated by adding to it those other agents which
showed good matches to A, that is, those agents which had
granules that went into A’s cluster cache. These agents will
be contacted next, after A finishes with B and any other en-
tries in its namelist. The various caches belonging to B that A
has been consulting were gathered by B in a similar way; ev-
ery agent participating in this protocol is thus building up a
collection of data for its own use and for the use of other
agents.

This procedure acts somewhat like human word of mouth. If
Sally asks Joe, “What should I look for in a new stereo?” Joe
may respond, “I have no idea, but Alyson was talking to me
recently about stereos and may know better.” In effect, this
has put Alyson into Sally’s rumor cache (and, if Joe could
quote something Alyson said that Sally found appropriate,
perhaps into Sally’s cluster cache as well). Sally now repeats
the process with Alyson, essentially hill-climbing her way to-
wards someone with the expertise to answer her question.

EXPERIMENTAL EVALUATION OF THE ALGORITHM

To test the algorithm presented above, the Yenta-Lite proto-
type was implemented. This prototype contains simulates 20
agents by running them all on a single machine.

A randomly-chosen mix of newsgroups and mailing list ar-
chives, comprising 13 megabytes total from 7 sources, were
used as the grain data for the agents. In particular, the sources
were comp.ai.philosophy, rec.pyrotechnics, and sci.math
(Usenet newsgroups), and alive-archive, macmoose-archive,
physics-archive, and subgenius-archive (two mailing lists
about programming projects, an announcement list for events
of interest to physicists, and an aggressively eclectic mailing
list for members of the Church of the SubGenius).

Each of the 7 sources was subdivided into smaller files, each
no more than 150-200K, yielding 64 smaller files total. Thus,
comp.ai.philosophy was divided into 20 small files, alive-ar-
chive into 3, and so forth. These smaller files were then ran-
domly distributed amongst the 20 agents, such that each agent
received either 3 or 4 of them.

Preclustering was run for each of the 20 agents, and the re-
sulting clusters were hand-analyzed to get an idea of what the
results were. While preclustering, a grain was deemed inter-
esting enough to create a granule if at least 5% of the other

grains available in the given agent also participated in the
granule. Thus, grains which formed granules consisting only
of themselves or a tiny number of other grains were inhibited.

By way of illustration, consider the two example agents be-
low, which were selected randomly from the 20 total. Agent
1 got two small files from comp.ai.philosophy (the first and
second of them, ai.1 and ai.2) and one from sci.math;
SMART converted the resulting grains into 180 vectors. Pre-
clustering yielded 12937 nonzero matrix entries, which were
39% of the total entries, and formed 5 different granules
(named 1.1 through 1.5). Human analysis of the resulting
granules indicated that there was some overlap between the
subject areas of the two newsgroups (two granules contained
messages from both newsgroups, for example). Agent 6, on
the other hand, completely partitioned the SubGenius mailing
list from the physics mailing list, and further segmented each
of those into two different subject areas.

Agent 1: ai.1, ai.2, sm.1,
180 vectors, p=.072, =.085, NZ=12937 (39%)
1.1 ai/sm. Limits of computing power/theoret. comput.
1.2 ai. Long discourses on fuzzy logic/psychology.
1.3 ai/sm. Philosophy of N,Z, Q, and R construction.
1.4 ai. Books about small towns.
1.5 sm. Division by zero tricks.

Agent 6: sg.1, rp.1, ph.2
68 vectors, p=.112, =.128, NZ=2131 (46%)
6.1 sg. SubGenius random flaming.
6.2 sg. More SubGenius random stuff; new topic.
6.3 ph. Drivel from the American Physical Society.
6.4 ph. Boston area physics calendar; bad physics poetry.

The distribution of similarity scores was somewhat surpris-
ing; instead of an expected Gaussian, the curve looked more
like a blackbody curve. For example, a randomly-selected re-
sult from comparing one particular grain to a set of others,
while trying to decide whether to place it into a granule,
yielded a curve with a mean p=.097, =.096, and the shape
below.

Once preclustering was completed, the agents were run in
random order and allowed to exchange messages. The simu-
lation was run “to convergence,” meaning that agents were
allowed to continue exchanging messages until no additions
were made to any agent’s cluster cache for hundreds of ex-
changes—and hence all clusters that were going to form did
form. This is not the situation that would obtain with true
Yenta on the Internet, both because the sheer number of
agents would require a very large number of message ex-
changes, and because the grains and granules making up each
individual agent would be under constant change as their us-
ers received or sent additional messages—hence the system
could never converge.

A plot of the number of additions made to the Yenta-Lite run-
ning at any particular instant vs the message exchange num-
ber in the entire simulation appears below. 

Convergence was achieved before 800 messages were ex-
changed between the agents. There was an initial burst in
which several agents added a large number of granules to
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their cluster caches, followed by a relative lull, followed by a
gradual rise and fall in cluster-cache additions. It is not entire-
ly clear what accounts for the lull around the 100th message
exchange; it is possible that all the “easy” clustering hap-
pened early and each agent then had to build up enough of a
rumor cache and do sufficient hill-climbing using it for
progress to continue.

Since this is a static simulation, it is possible to ask how the
number of messages exchanged during the clustering phase
compares to a brute-force solution, in which each agent’s
granules are methodically compared to every other granule in
every other agent. Since the 64 original files turned into 68 to-
tal granules, such a crossbar would require 682=4624 com-
parisons if done naively, and 2248 comparisons if one realiz-
es that the upper triangular part of the crossbar matrix, minus
the main diagonal, is all that need be computed given a reflex-
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ive comparison function. On average, each message ex-
change by each Yenta-Lite compared 3.4 granules (68/20) at
each end of the exchange, so the approximately 750 message
exchanges performed 2550 comparisons. This is not much
more work than the brute-force solution would have taken,
yet it possesses desirable properties that the brute-force cross-
bar would not:

• The clusters are grown incrementally for each agent, so at
any given time, each agent sees at least some of many
clusters.

• No agent need retain knowledge of all other granules in
the system at any time.

• If a agent were to disappear from the system, the only last-
ing effect would be for other agents to “forget” it; the rest
of the clusters would still form.

Manual inspection of the clusters that resulted from this run
show that the brute-force crossbar solution and the referral
solution are essentially identical.

RELATED WORK

There are many efforts in distributed AI and multi-agent sys-
tems which could be considered relevant; here we consider
only other matchmaking systems and related approaches.

A common technique in systems that support computation
amongst a group of users is to centralize a server and have its
users act like clients. Systems that match user interests to
each other, and have such a centralized structure, include We-
bhound [14] and HOMR/Ringo[9].

Kuokka and Harada [8] describe a system that matches adver-
tisements and requests from users and hence serves as a bro-
kering service. Their system certainly is a matchmaker, but it
assumes a centralized matchmaker and a highly-structured
representation of user interests.

Others have taken a more distributed approach. For example,
Kautz, Milewski, and Selman [6] report work on a prototype
system for expertise location in a large company. Their pro-
totype assumes that users can identify who else might be a
suitable contact, and use agents to automate the referral-
chaining process; they include simulated results showing
how the length and accuracy of the resulting referral chains
are affected by the number of simulated users and the accura-
cy and helpfulness of their recommendations. Yenta-Lite dif-
fers from this approach in using ubiquitous user data to infer
interests, rather than explicitly asking about expertise.

CONCLUSIONS AND FUTURE WORK

Yenta-Lite demonstrates that referral-based matchmaking
can provide acceptable results without requiring any one
agent to know about all other agents, and without requiring
unreasonable messaging traffic or local computation.

Work is currently proceeding on several aspects of the final
Yenta design:

• Implementing the requisite privacy safeguards and user
interface to permit a networked implementation with real
user data.
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• Evaluating the suitability and stability of the clustering al-
gorithms in the face of hundreds or thousands of instanti-
ations of the agent in a real environment.

• Experimenting with different comparison metrics to en-
hance Yenta’s ability to accurately determine a match in
user interests.
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