
 

Submitted to: The First International Conference on Multi-Agent Systems (ICMAS ‘96)

 

A Security Architecture for Multi-Agent Matchmaking

 

Leonard N. Foner

 

MIT Media Lab
20 Ames St, E15-305

Cambridge, MA 02139

617/253-9601

 

ABSTRACT

 

Using a multi-agent system to match and introduce users who
share share interests has important advantages, but handling
sensitive data involves a number of design challenges in en-
suring user privacy. This paper describes many of them,
briefly summarizes some relevant cryptographic technology,
and uses this technology to demonstrate how to avoid most of
the potential privacy problems without unacceptable perfor-
mance penalties.

 

INTRODUCTION

 

In general, agents are useful because they understand some
aspects of their users’ goals and can carry out actions auton-
omously to fulfill those goals. This may require that any giv-
en agent know personal or sensitive information about its us-
er, and that it must be robust against revealing this informa-
tion to third parties or allowing its actions to be subverted by
a malicious interloper into carrying out an undesired action.

As the value of the information or the motivation to inflict
damage increases, the possibility of inadvertent information
disclosure or subversion of an agent’s goals by an attacker are
very real. This is particularly important in applications which
handle highly personal information, or which handle real
money. In the former, not only may people’s personal privacy
be violated, but careless handling of this data may be tanta-
mount to violating the laws in some countries that mandate
the safe handling of personal data. In the latter, there is the po-
tential for significant financial loss, or—in the case of a pub-
lically-traded company, for example—for violations of secu-
rities laws related to confidential information.

Multi-agent systems require that the multiple agents collabo-
rate to accomplish their users’ collective goals. Such systems
must often depend, to a greater or lesser extent, on sources of
information obtained from others, and must often “leak” in-
formation about their own internal state or the goals of their
users in order to interoperate with their peers; this makes se-
curity and privacy harder to achieve. Further, a trusted inter-
mediary is often an impractical or unavailable solution, which
complicates the problem.

This paper describes a multi-pronged strategy for improving
the security of a multi-agent matchmaker system named 

 

Yen-
ta

 

 [6][7][8]; the system itself and its concomitant security ar-
chitecture are under active development. The following sec-
tions describe:

• the nature of the problem, including an introduction to
Yenta’s basic mode of operation, the types of attacks ex-
pected, design issues in security systems in general, and
what problems we are 

 

not

 

 attempting to solve;

• general techniques, mostly cryptographic, for assuring
confidentiality and authenticity of data; and

• the nature of the solution, which uses these general tech-
niques to solve some of the problems in making a multi-
agent matchmaker.

Readers of this paper are 

 

not

 

 expected to be well-versed in
cryptography or to have extensive prior experience in com-
puter security. The cryptographic techniques mentioned here-
in are used as “black boxes,” without proof that they properly
implement the functionality described for the “box” and with-
out the mathematical background which underlies them;
those who wish to check these assertions may examine the ci-
tations where appropriate.

 

THE NATURE OF THE PROBLEM

 

This section describes, very briefly, Yenta’s underlying ar-
chitecture, then discusses the types of attacks it is likely to
see, as well as the problems we are 

 

not

 

 trying to solve.

 

Yenta

 

The fundamental application being supported is that of a
completely decentralized, peer-to-peer matchmaking agent
named Yenta. This section provides only a brief summary of
the underlying structure of Yenta; [7] and [8] provide much
more complete information on the functioning of the match-
making parts of Yenta.

Yenta is designed to find people with similar interests on the
Internet and introduce them to each other. Such introductions
can serve as the basis for instant coalitions or discussion
groups, and can help mitigate problems such as two individ-
uals just doors away from each other who are working on
similar problems—but never knew it because they didn’t hap-
pen to mention it to each other. Introductions can take forms
such as opening an encrypted two-way channel between two
pseudonymous Yentas (whereupon their users can simply
type at each other), or more complicated, “flirtation-like” ne-
gotiations.

Each user runs his or her own copy of Yenta . Each agent de-
termines the user’s interests by scanning all the mail and files



 

2

owned by the user. Each individual message or file becomes
part of a set of larger structures called 

 

granules

 

; each granule
represents some discrete interest. Since Yenta works with
ubiquitous data, users need not be able to explicitly articulate
their own interests (nor need they spend the time to do so).
However, the sensitive nature of the data, combined with the
resulting introductions performed, motivate most of the secu-
rity considerations discussed in this paper.

A user who had, say, 30 disparate interests would thus in the
best case have about 30 different granules constructed from
his or her files. The user may omit certain granules from con-
sideration: for example, many messages about scheduling
meetings look alike to Yenta, and most users would rather 

 

not

 

have an introduction arranged with someone else just because
they both happen to have meetings!

For those granules not omitted, any given Yenta follows a 

 

re-
ferral algorithm

 

 that finds other Yentas that share interests, as
follows. Each Yenta maintains a 

 

cluster cache

 

 and a 

 

rumor
cache

 

. The cluster cache contains the identities of those other
Yentas which share interests with this Yenta’s user—in other
words, if two Yentas are in each others’ cluster caches, it is
because each of them has at least one granule that matches a
granule in the other closely enough.

The rumor cache, on the other hand, contains the identities
(and representative granule text!) from the last 

 

n

 

 Yentas en-
countered on the net for which the local Yenta does 

 

not

 

 share
an interest. When two Yentas communicate, they execute a
referral algorithm in which Yenta A will ask Yenta B for that
member of B’s rumor cache which most closely matches
some granule from A. Say that Yenta C is this match. Yenta
A will then directly communicate with Yenta C and repeat the
referral; this leads to a sort of hill-climbing approach into a
collection of Yentas which are all in each other’s cluster
caches (because they share an interest in common). It is the
need to get referrals which leads to the requirement that some
sort of 

 

content

 

 be associated with Yentas in the rumor cache,
as well as their identities.

For many more details on bootstrapping issues, the way that
granules are formed, the way the clustering algorithm works
in detail, and the performance of the overall algorithm, see [7]
and [8].

 

The threat model: what attacks may we expect?

 

Given the system above, there are a wide variety of potential
attacks which may be mounted by malicious or curious third
parties. They generally break down as follows into 

 

passive

 

 at-
tacks, in which communications are merely monitored, and

 

active

 

 attacks, in which communications or the underlying
agents themselves are subverted, via deletion, modification,
or addition of data to the network.

 

Passive attacks

 

The most obvious attack on the Yenta system is simple mon-
itoring of packet data; such an attack is often accomplished
with a 

 

packet sniffer

 

, which simply records all packets trans-
mitted between any number of sources. If such data includes
users’ mail messages or files, then two Yentas which are trad-
ing this information back and forth will leak information to an

 

eavesdropper

 

.

Even if the actual communications between Yentas are per-
fectly encrypted, however, passive attacks can still be quite
powerful. The easiest such attack, in the face of encrypted
communications, is 

 

traffic analysis

 

, in which the eavesdrop-
per monitors the 

 

pattern

 

 of packet exchange between Yentas,
even if the actual 

 

contents

 

 of the packets are mystery. This
can be surprisingly effective: It was traffic analysis that alert-
ed a pizza delivery service local to the Pentagon—and thus
the media—when the United States was preparing a military
action at the beginning of the Gulf War; when late-night de-
liveries of pizza suddenly jumped, it became obvious that
something was up.

 

Active attacks

 

Active attacks involve disrupting the communications paths
between agents, or attacking the underlying infrastructure.
The most common such attack is a 

 

spoofing

 

 attack, in which
one agent impersonates another, or some outside attacker in-
jects packets into the communication system to simulate such
an outcome. Often, spoofing is accomplished via a 

 

replay

 

 at-
tack, in which prior communications between two agents are
simply repeated by the outsider. Even if the plaintext of the
encrypted contents of the communication are not known,
such attacks can succeed so long as duplicate communica-
tions are allowed and the attacker can deduce the effect of
such a repeat. For instance, if it is noticed that a cash-dispens-
ing machine will always dispense money if a particular (en-
crypted) packet goes by, a simple replay can spoof the ma-
chine into disgorging additional cash.

More sophisticated attacks are certainly possible. Individual
running Yentas might be subverted by a third party, such that
they are no longer trustworthy. Such a subverted Yenta might
use encryption keys which are known to the interloper, for ex-
ample. Alternately, the attacker might create his or own own
agent, which looks like a Yenta to the rest of the network, but
pretends to be interested in 

 

everything

 

—such a Yenta might
then be used to troll for people interested in particular topics,
and presumably also would be modified to disgorge anything
interesting to its creator.

Finally, the actual distributed Yenta might be modified by a
determined attacker at the source itself—say, by subtly intro-
ducing a trojan horse into the application at its distribution
point(s). This is essentially a more-distributed and more-
damaging version of the subverted-agent attack above. As an
example, consider all the Web pages currently extant which
proclaim, “These pages are best viewed with Netscape 2.x.
Download a copy!” Now imagine what would happen if the
link pointed to a carefully-modified version of Netscape that
always supplied the 

 

same

 

 session key, known to the interlop-
er: the result would be that anyone who took the bait would
be running a version of Netscape with no security whatsoev-
er, hence leaving themselves vulnerable to, e.g., a sniffing at-
tack on their credit card number.

 

Security design desiderata

 

Yenta’s security architecture is cognizant of several princi-
ples which are well-known in the security and cryptographic
communities. This section discusses several of them, and



 

3

demonstrates how they have motivated various decisions tak-
en in the design.

 

Security through obscurity does not work. 

 

This means that
any design which depends upon secrecy of the 

 

design

 

 is guar-
anteed to fail, since secrets have a way of getting out. Since
Yenta is designed to be run by a large number of individuals
all across the Internet, its binaries must be public, hence secu-
rity through obscurity would be untenable anyway in the face
of disassemblers and reverse-engineering. (In fact, Yenta’s
source code is 

 

also

 

 public, which should 

 

increase

 

 confidence
in the resulting system; see 

 

Yvette

 

 below.)

 

Keys are the important entity to protect. 

 

In good cryptograph-
ic algorithms, it is the 

 

keys

 

 that are the important data. Since
keys are usually a small number of bits (hundreds or perhaps
thousands at most), and since new keys are often trivial to
generate, protecting keys is much easier than protecting algo-
rithms—although key management is often the hardest and
weakest point of a cryptosystem. Yenta has a variety of keys
and manages them carefully.

 

Good cryptography is hard to design and hard to verify.

 

 Most
brand-new cryptographic systems turn out to have serious
flaws. Only when a system has been carefully inspected by a
number of people is it reasonable to trust it. This is another
reason why security through obscurity is a bad idea. Yenta
depends on well-established algorithms and protocols for its
fundamental security, since they have been carefully charac-
terized.

 

Security is a function of the entire system, not individual piec-
es.

 

 This means that even good cryptography and system de-
sign is worthless if it can be compromised by bribing or
threatening someone. Part of the reason for Yenta’s decen-
tralized nature is to avoid having a single point of compro-
mise.

 

Malevolence and poor design are sometimes indistinguish-
able.

 

 Many system failures that look like the result of malev-
olence are instead the result of the interaction of an accident
and some unfortunate element of the design. For example, the
entire ARPAnet failed one Sunday morning in 1973 due to a
double-bit error in a single IMP [13]. Or take this quote: “The
whole thing was an accident. No saboteur could have been so
wildly optimistic as to think he could destroy an airplane this
way,” which was used to describe how an aircraft was demol-
ished on a friendly airfield during World War II when some-
one ingeniously circumvented safety measures and inadvert-
ently connected a mislabelled hydrogen cylinder to the
plane’s oxygen system [17].

 

If you don’t want to be subpoenaed for it, don’t collect it.

 

 Fed-
eral Express, a delivery service in the United States, receives
(and hence is compelled to grant) several hundred subpoenas
a 

 

day

 

 for its shipping records [18]. The safest way to protect
private data collected from others from such disclosure—not
to mention the hassle of responding to a stream of subpoe-
nas—is never to collect it in the first place. Both the lending
records of most libraries, and the logfiles of MIT’s primary
mailers (which are guaranteed to be thrown away irretriev-
ably when three days old) adhere to this rule. This also moti-
vates Yentas’s decentralized design;any central point is a

subpoena target.

 

Security is a goal, not an absolute.

 

 A computer can often be
made perfectly secure by unplugging it—not to mention va-
porizing its disks (and their backups...). However, this is a
high price to pay. Tradeoffs between security and functional-
ity or performance are often necessary. It is also true that new
attacks are constantly being invented; hence, while this re-
search aims at a 

 

more-secure

 

 implementation than that which
is possible without attending to these issues at all, it can never
claim to be 

 

completely secure. 

 

We therefore aim for security
that is 

 

good enough

 

, such that user privacy is protected as
well or nearly as well as it would be if Yenta was not running;
we cannot hope for better, and may have to make tradeoffs
that nonetheless lead to a little bit of insecurity for a large
benefit.

 

Problems 

 

not

 

 addressed

 

There are a number of problems which are 

 

not

 

 addressed in
the security architecture to be presented. For instance, since
each Yenta runs on a user’s individual workstation, and each
Yenta is not itself a mobile agent per se [2][9][10][19], we do
not have the problem of executing arbitrary chunks of possi-
bly-untrusted code on the user’s local workstation.

Further, it is assumed that, while 

 

some

 

 Yentas may have been
deliberately compromised, the vast majority of them have
not. This mostly frees us from having to worry about the
problems of 

 

Byzantine failure 

 

[4][14] in the system design,
wherein a 

 

large

 

 portion of the participants are either malfunc-
tioning or actively malicious.

We also assume, as in the Byzantine case, that not 

 

every

 

 agent
any 

 

particular

 

 Yenta communicates with is compromised. If
this were not true, certain parts of the algorithm would be vul-
nerable to a 

 

ubiquitous

 

 form of the 

 

man-in-the-middle

 

 attack,
wherein an interloper pretends to be A while talking to B, and
B while talking to A, with neither of them the wiser. (Weaker
forms of this, wherein there are only a 

 

few

 

 agents doing this,
have reasonable solutions).

In addition, we do not explicitly deal with 

 

denial-of-service

 

attacks, which are extremely difficult for any distributed sys-
tem to address. Such attacks amount to, for example, drop-
ping every packet between two Yentas that are trying to com-
municate; this attack looks like a network partition to the
Yentas involved, and there is little defense.

Finally, we have the problem of Yenta’s use of strong cryp-
tography to protect users’ privacy. Since the United States
government currently regulates such cryptographic software
as a munition (under 

 

ITAR

 

, the International Treaty On Arms
Regulations [5]), the cryptographic portions of Yenta’s soft-
ware are currently unavailable outside the US unless added
back in elsewhere. This somewhat complicates parts of its de-
sign; solving the limitations of ITAR is not explicitly ad-
dressed here.

 

SOME USEFUL CRYPTOGRAPHIC TECHNIQUES

 

This section introduces some useful cryptographic techniques
that will be used later. For a much more complete introduc-
tion that includes an excellent survey of the field, consult
[15].



 

4

 

Symmetric encryption

 

One of the most straightforward cryptographic techniques
uses 

 

symmetric keys. 

 

Algorithms such as IDEA ([15] pp. 319-
324) work this way. Given a 128-bit key, the algorithm takes

 

plaintext

 

 and converts it to 

 

ciphertext

 

. Given the same key, it
also converts ciphertext back into plaintext. Expressed math-
ematically, we can say that C=K(P) [the ciphertext is comput-
ed from the plaintext via a function of the key K], and simi-
larly P=K(C) [the reverse also works].

IDEA is probably very secure. The problem comes in 

 

distrib-
uting the keys

 

: we cannot just transmit the keys before the en-
crypted message (after all, the channel is deemed insecure or
we wouldn’t need encryption in the first place!), hence users
must first meet (

 

out-of-band

 

, e.g., not using the insecure
channel) to exchange keys. This is clumsy.

 

Public-key encryption

 

A better approach uses a 

 

public-key cryptosystem

 

 [PKC],
such as RSA ([15] pp. 466-473) or the many other variants of
this technology. In a public key system, each user has 

 

two

 

keys: a 

 

public

 

 key and a 

 

secret 

 

key, which must be generated
together—neither is useful without the other. As its name im-
plies, each user’s public key really is public—it can be pub-
lished in the newspaper. The secret key, on the other hand, is

 

never

 

 shared, not even with someone the user wishes to com-
municate with.

User A encrypts a message to B by computing C=K

 

PB

 

(P),
e.g., a function involving B’s 

 

public

 

 key. To decrypt, B com-
putes P=K

 

SB

 

(C), e.g., B’s 

 

secret

 

 key. Note that, once encrypt-
ed, A 

 

cannot

 

 decrypt the resulting message, using any key A
has access to—the encryption acts 

 

one-way

 

 if A does not
have B’s secret key (and she shouldn’t!). [One important de-
tail: since PKC’s are usually slow, one usually creates a
brand-new 

 

session key

 

, transmits 

 

that

 

 using PKC, then uses
the session key with a symmetric cipher such as IDEA to
transmit the actual message.]

This scheme provides not only 

 

confidentiality

 

 (third parties
cannot read the messages), but also 

 

authenticity

 

 (B can prove
that A sent the message). How does this work? Before A
sends a message, she first 

 

signs

 

 the message by encrypting it
(really a 

 

cryptographic hash

 

 of the message—see below)
with 

 

her own private key

 

. In other words, A computes
P

 

signed

 

= K

 

SA

 

(P). Then, A 

 

encrypts

 

 the message to B, comput-
ing C=K

 

PB

 

(P

 

signed

 

). B, upon receiving the message, com-
putes P

 

signed

 

=K

 

SB

 

(C), which recovers the plaintext, and can
then 

 

verify 

 

A’s signature by computing P=K

 

PA

 

(P

 

signed

 

). B
can do this, because he is using A’s 

 

public

 

 key to make the
computation; on the other hand, for this to have worked at all,
A must have sent it, because only her 

 

secret

 

 key could have
signed such that her public key worked to check it. Only if
someone had cracked or stolen A’s secret key could the sig-
nature have been forged.

 

Cryptographic hashes

 

It is often the case that one merely wishes to know whether
some message has been tampered with, without having to
transmit a copy out of band. One easy way to do this is via a
cryptographic hash, such as MD5 ([15], pp. 436-441) or the

Secure Hash Algorithm (SHA, [15], pp. 442-445). These
hash functions compute a short (128-bit or 160-bit, respec-
tively) 

 

message digest

 

 of an unlimited-length original mes-
sage, with the unusual property that changing 

 

any single bit

 

of the original message changes, on average, 

 

half

 

 of the bits
of the digest, in a one-way fashion—it is infeasible, given a
digest, to compute a message which, when hashed, would
yield the given digest. On the other hand, 

 

anyone

 

 can com-
pute the hash of a message, since the algorithm is public and
uses no keys.

Since such hashes are compact yet give an unambigous indi-
cation of whether the original message has been altered, they
are often used to implement 

 

digital signatures

 

 such as in the
RSA scheme above—what is signed is not the actual cleartext
message, but a hash of it. This also improves the speed of
signing (since signing a 128- or 160-bit hash is much faster
than signing a long message), and the actual security of the ci-
pher as well (because RSA is vulnerable to a 

 

chosen-plaintext

 

attack; see [15], p. 471).

 

Key distribution

 

One of the hardest problems of most cryptosystems, even
public-key systems, is correctly 

 

distributing

 

 and 

 

managing

 

keys. In a public-key system, the obvious attacks (compro-
mise of the actual secret key) are often relatively easy to
guard against (keep the secret key in memory as little as pos-
sible, encrypt it on disk using DES with a passphrase typed in
by the user to unlock it [20], and keep it offline on a floppy if
possible).

But consider this: Alice wishes to send a message to Bob. She
looks up Bob’s public key, but interloper Mallot intercedes
and supplies 

 

his own

 

 public key. Alice has no way of know-
ing that Mallot has done so, but the result of her encryption is
a message that 

 

only

 

 Mallot, and not Bob, can read! Even if
one demands that Alice and Bob have a round-trip conversa-
tion to prove that they can communicate, Mallot could be
playing man-in-the-middle, simultaneously decrypting and
re-encrypting in both directions as appropriate.

Systems such as Privacy Enhanced Mail [12] use a central-
ized, tree-structured key registry, which is inconsistent with
Yenta’s decentralized goals. On the other hand, PGP [20]
functions with completely decentralized keys, by having us-
ers 

 

sign each other’s keys

 

. When Alice gets “Bob’s” public
key, she checks its signatures to see if 

 

someone she trusts

 

 has
signed that key, or some short chain of trustable people, etc.
If so, then this key must be genuine (or there is a conspiracy
afoot amongst their mutual friends); if not, then the key may
be a forgery. This practice of signing the keys of those you
vouch for is called the 

 

PGP Web of Trust

 

 and is the primary
safeguard against forged keys.

 

STRUCTURE OF THE SOLUTIONS

 

This section presents some solutions to some likely security
problems in Yenta, using some of the technology mentioned
previously. It presents a 

 

range of solutions; not every user
might want the overhead of the most complete protection, and
the elements, while often solving separate problems, some-
times also act synergistically to improve the situation. Final-
ly, for brevity, it omits many details present in the complete



5

design.

The nature of identity

Uniqueness and confidentiality

It should not be possible to easily spoof the identity of a Yen-
ta, for a number of reasons (one major reason is discussed im-
mediately below), yet anonymity is very important for con-
trolling the impact of information disclosure and to reduce the
risk of introductions. For this reason, every Yenta sports a
unique cryptographic identity—a digital pseudonym. This
identity corresponds, essentially, to the key fingerprint [20] of
the individual Yenta’s public key—a short (128 bits) crypto-
graphic hash of the entire key. In order to keep some interlop-
er from stealing, say, Yenta A’s identity, any Yenta commu-
nicating with A encrypts messages using A’s public key. A
can prove that its identity is genuine by being able to decrypt;
further, such communications have an internal sequence
number (itself encrypted) to prevent replay attacks by a man
in the middle. Further, of course, such encryption prevents an
eavesdropper from intercepting the actual conversation.

The completely decentralized nature of Yenta complicates
key distribution. The model adopted is the decentralized
model used by PGP [20]. By not relying on a central registry,
we eliminate that particular class of failures. And interesting-
ly, the Yenta architecture partially eliminates the disadvan-
tage of PGP’s decentralized key distribution—that of guaran-
teeing that any particular public key really does correspond to
the individidual for which it is claimed. In PGP, we care
strongly about actual individuals, but in Yenta, only the cryp-
tographic ID’s are important—indeed, Yenta tries to hide the
true identity of its users unless they arrange (via an introduc-
tion) to be known to each other.

Spamming and spoofing

Unfortunately, this pseudonymity comes at a price: When an
introduction is about to be made, how can we have any idea
who we might be about to be introduced to? Can we know
that the last 10 Yentas we’ve seen do not all surreptitiously
belong the same individual? Can we know that this person
won’t spam us with junk mail once he discovers our interest
in a particular topic? And so forth.

Yenta solves this via a system of attestations. Any given Yen-
ta may have any number of text strings associated with it,
chosen by its user and signed by any number of other Yentas.
Such strings might be “I am not a junk-mailer” or “I really am
male” or whatever else the user wishes to write. When an in-
troduction is to be made, both parties can check each other’s
attestations. If some important attestation is not signed by a
sufficient number of possibly-trustable people to whom the
user has already been introduced (and whose identities might
themselves be checked via the web of trust), it might be treat-
ed with suspicion, and perhaps the introduction aborted. Note
that the ultimate decision must be made by a human, since it
is human trust in the quality of signatures we are talking
about.

Additionally, we can use a distributed, linked, timestamping
protocol ([15], p. 77) to make strong assertions about how
long this key has been around. Such a protocol can allow us

to trust that, at the very least, if the Yenta we are talking to is
bogusly hiding its true identity via a faked web of attestations,
it must have had at least n months of time invested in doing
so. This biases our trust towards “old-timers.”

Eavesdropping

The generally-encrypted nature of inter-Yenta communica-
tion makes most eavesdropping, including some but not all
man-in-the-middle attacks, quite difficult. However, traffic
analysis is still a possibility—if an interloper knows what one
Yenta is interested in, watching who it clusters with could be
useful.

Fortunately, Yenta can take advantage of the sort of random-
reforwarding used in Cypherpunks remailer chains. In this
scheme, any given message between Yentas A and B is first
routed through other Yentas known in common between then
(with the potential for further reroutes along the chain, so
long as the endpoints are preserved). Such Yentas might be
taken from either the cluster or rumor caches, though the lat-
ter is preferred if possible for maximal “spreading” of mes-
sage traffic. For maximal robustness, messages should be
padded, reordered, and delayed by random amounts to foil
“input-and-output” monitoring along the path, a la the “ideal
digital mix” [1].

Malicious agents

If some malicious person was running a subverted version of
Yenta, what could he discover? The most important informa-
tion consists of the identities of other Yentas in the cluster
cache (especially if those identities can be “real” identities
and not digital pseudonyms) and the text in the rumor cache
(especially if, again, such text can be correlated to real peo-
ple). There are therefore two general strategies to combat
this: hiding real identifying information as well as possible,
and minimizing the amount of text stored in the rumor cache.

To accomplish the first, consider that Yenta A must somehow
be able to communicate with Yenta B; that implies that, un-
less we broadcast all traffic to everyone, somebody must
know the two IP addresses involved—but it need not be A
and B. Instead, we can use random reforwarding to pass traf-
fic to any number of intermediate Yentas, and they can use an
(n,k) secret-sharing protocol [11] to jointly reconstruct the IP
address of either party, given that any n or more of k Yentas
know part of the secret, which is spread out randomly in ad-
vance. The only single Yenta to get a relevant (endpoint) IP
address (after reconstruction of the shared secret) is not either
of the endpoint Yentas, hence it cannot read the (encrypted)
traffic, yet the two endpoint Yentas cannot determine where
the traffic is going. Thus is “real” identity protected.

A similar digital mix can protect the contents of the text in the
rumor cache, irrespective of the IP-identity protection above.
This is much simpler—instead of having Yenta A store all the
grains from B in its rumor cache, B spreads them out to many
others (for example, one per paragraph) and gives only their
ID’s to A. When A tries to make a referral, it asks each of the
other Yentas to instead compare their scattered paragraphs
and report directly back to B. This diffuses the individual
paragraphs of text across the entire population of Yentas,
meaning that no one Yenta is in a position to reveal very



6

much about the text—it takes large-scale collusion.

Protecting the distribution

There is a final piece of the puzzle—how do users of Yenta
know that their copy is trustworthy? The easiest approach, of
course, is to cryptographically sign the binaries, such that any
given binary may be checked for tampering with the authori-
tative distribution point. But what if the program itself, at the
distribution point, had a trojan horse inserted into its source,
either by the implementors themselves, or by a malicious
third party who penetrates the development machine? Even
though the source is freely distributed, and may be recom-
piled by end-users and checked against the binary, what indi-
vidual user would want to read the entire source to check for
malicious inclusions? (This is, of course, a problem for any
software, and not just Yenta—but Yenta is a particularly dif-
ficult piece of software for a user to verify solely from its be-
havior, since it both reads sensitive files and engages in a lot
of network traffic.)

To combat this, we have developed Yvette, a Web-based tool
which allows multiple people to collaboratively evaluate
Yenta’s source code, storing cryptographically-signed (hence
traceable and non-spoofable) comments on particular pieces
of the source where others can view them. Each individual
need only check a small piece of the whole, yet anyone can
examine the collected comments and decide whether their
contents and coverage add up to an evaluation one can trust.

RELATED WORK

We are explicitly examining here only security designs for
multi-agent systems—not multiple agents, security, or cryp-
tography in general. This is a relatively young area. Most ef-
forts to date have focussed on security architectures for
KQML (e.g., [16]) and on Java [2][10] and bugs in its securi-
ty [3]. There is considerable room for fruitful interaction be-
tween researchers working on agents and those with experi-
ence in security and cryptography.

CONCLUSIONS

Multi-agent systems which handle personal data pose chal-
lenging problems of privacy and security. Careful system de-
sign can mitigate most of these problems without unaccept-
able performace penalties.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Pattie Maes, for her ad-
vice and her support of this research. This research has been
supported in part by British Telecom.

REFERENCES

[1] Chaum, David, “Untraceable Electronic Mail, Return Ad-
dresses, and Digital Pseudonyms,” Communications of the
ACM, volume 23 number 2, February, 1981.

[2] Cornell, Gary and Horstmann, Cay, Core Java, SunSoft
Press, 1996.

[3] Dean, Drew, Felten, Edward, and Wallach, Dan, “Java Se-
curity: From HotJava to Netscape and Beyond,” IEEE Sym-
posium on Security and Privacy, Oakland, CA, May 6-8,
1996.

[4] Feldman, Paul, and Micali, Silvio, “Optimal Algorithms
for Byzantine Agreement,” 20th STOC, pp.148-161, ACM,
New York, 1988.

[5] International Traffic in Arms Regulations, 58 Federal
Register 39,280 (1993) (to be codified at 22 C.F.R.§§120-
128, 130).

[6] Foner, Leonard, “Clustering and Information Sharing in
an Ecology of Cooperating Agents, or How to Gossip without
Spilling the Beans,” Proceedings of the Conference on Com-
puters, Freedom, and Privacy '95 Student Paper Winner,
Burlingame, CA, 1995.

[7] Foner, Leonard, “A Multi-Agent Referral System for
Matchmaking,” PAAM ‘96 Proceedings, London, England,
1996.

[8] Foner, Leonard, “Yenta: A Multi-Agent, Referral-Based
Matchmaking System,” submitted to ICMAS ‘96, Kyoto, Ja-
pan, 1996.

[9] General magic, The Telescript Language Reference, Oc-
tober 1995, {http://www.genmagic.com/Telescript/TDE/
TDEDOCS_HTML/telescript.html}

[10] Gosling, J., and McGilton, H., The Java Language Envi-
ronment, Sun Microsystems, May 1995. {http://ja-
va.sun.com/whitePaper/javawhitepaper_1.html}

[11] Ingemarsson, I., and Simmons, G. J., “A Protocol to Set
Up Shared Secret Schemes Without the Assistance of a Mu-
tually Trusted Party,” Advances in Cryptology—EUROC-
RYPT ‘90 Proceedings, pp. 266-282, Springer-Verlag, 1991.

[12] Kaliski, Bert, “Privacy Enhancement for Internet Elec-
tronic Mail: Part IV: Key Certification and Related Services,”
RFC1424, February 10, 1993, {ftp://ds.internic.net:/rfc/
rfc1424.txt)

[13] McQuillan, J., “Software Checksumming in the IMP and
Network Reliability,” RFC528, June 20, 1973, {ftp://ds.inter-
nic.net/rfc/rfc528.txt}

[14] Pease, Marshall, Shostak, Robert, Lamport, Leslie,
“Reaching Agreement in the Presence of Faults,” Journal of
the ACM 27/2, pp.228-234, 1980.

[15] Schneier, Bruce, Applied Cryptography: Protocols, Al-
gorithms, and Source Code in C, second edition, John Wiley
& Sons, 1996.

[16] Thirunavukkarasu, Chelliah, Fini, Tom, and Mayfield,
James, “Secret Agents—A Security Architecture for the
KQML Agent Communication Language,” submitted to the
CIKM ‘95 Intelligent Information Agents Workshop, Balti-
more, MD, December 1995.

[17] Quist, Anton Braun, Excuse Me, What Was That? Con-
fused Recollections of Things That Didn’t Go Exactly Right,
Dilithium Press, 1982.

[18] The Wall Street Journal, page B1, April 11, 1995.

[19] White, James, “Telescript Technology: Mobile Agents,”
Software Agents, Jeffrey Bradshaw, ed., AAAI/MIT Press,
1996.

[20] Zimmermann, Philip, The Official PGP User’s Guide,
MIT Press, 1995.


