
 

To appear in: The First International Conference on Autonomous Agents (Agents ‘97), Marina del Rey, CA

 

Yenta: A Multi-Agent, Referral-Based Matchmaking System

 

Leonard N. Foner

 

MIT Media Lab
20 Ames St, E15-305

Cambridge, MA 02139
foner@media.mit.edu

617/253-9601

 

Abstract

 

Many important and useful applications for software
agents require multiple agents on a network that com-
municate with each other. Such agents must find each
other and perform a useful joint computation without
having to know about every other such agent on the net-
work. As an example, this paper describes a 

 

matchmaker

 

system, designed to find people with similar interests
and introduce them to each other. The matchmaker is de-
signed to introduce 

 

everyone

 

, unlike conventional Inter-
net media which only allow those who take the time to

 

speak

 

 in public to be known.

The paper details how the agents that make up the
matchmaking system can function in a decentralized
fashion, yet group themselves into clusters which reflect
their users’ interests; these clusters are then used to
make introductions or allow users to send messages to
others who share their interests. The algorithm uses 

 

re-
ferrals

 

 from one agent to another in the same fashion
that word-of-mouth is used when people are looking for
an expert. Several prototypes of various parts of the sys-
tem have been implemented, and the most recent results,
including simulations of up to 1000 such agents, are pre-
sented.

 

Introduction

 

Many useful software agents are 

 

facilitators

 

—they act as 

 

in-
termediaries

 

, bringing people together for one reason or an-
other. Such agents often need only an approximate knowl-
edge of the domain of interest, leveraging most of their power
off users’ own knowledge. For example, systems such as We-
bhound/Webdoggie [7], or HOMR/Ringo/Firefly [9] use 

 

au-
tomated collaborative filtering

 

 to find either Web pages or
music, respectively, that fit each individual user’s taste. Nei-
ther system needs to understand Web pages or music in any
real way—instead, they allow users to easily share their pref-
erences with each other in a way that the 

 

users

 

 understand.

While the two agents above match up users’ tastes to make
recommendations, their focus is not explicitly matchmaking
users and introducing them to each other. The research de-
scribed in this paper is focussed on introducing users who are
interested in similar topics. There are a number of reasons
why one might want to do this:

• People are often working on similar projects without real-
izing it—be it two people down the hall from each other
reinventing the same wheel, or two doctors both doing re-
search on similar cases but having no idea that both of
them are studying the same literature.

• It is often the case that people need to find an expert in
some field, but finding such an expert can be difficult and
time-consuming. Those who are not well “plugged-in”
via word of mouth can find this even more difficult.

• There is potential for a great deal of social collaboration
on the Internet, but it is often underutilized. “Lurkers”
who read but do not post to mailing lists or newsgroups,
for example, are an undiscovered resource to the commu-
nity, invisible because they do not contribute to public
discussion.

Current communications systems on the Internet are not well-
designed for this sort of matchmaking. In almost all media on
the Internet, only people who take the time to write a piece of
prose and transmit it somewhere, whether by mail, news, or
making a Web page, are ever seen by anyone else. Two people
who are both working on the same problem, or who share an
interest, may never know if they themselves are not actually
writing about it. The matchmaking system described here is
designed to aid these “lurkers” who are not part of the public
discussion nonetheless find each other and establish a com-
munity. It does so using a 

 

multi-agent

 

 strategy and a 

 

com-
pletely decentralized, peer-to-peer

 

 architecture.

 

Why having multi-agent systems helps

 

Many currently-implemented agents use a 

 

centralized

 

 archi-
tecture, in which one agent serves either one or many users.
A centralized architecture has its advantages: for example, if
there is no effective way for peers to find each other, a cen-
tralized solution may be the only workable solution. Unfortu-
nately, there are problems with a centralized architecture:

 

Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of ACM. To copy other-
wise, or to republish, requires a fee and/or specific permission. Agents ‘97
Conference Proceedings, 

 



 

 1997 ACM.



 

2

• Scaling such an architecture to large numbers of users is
difficult; in systems which must correlate user interests,
for example [9], straightforward approaches to this prob-
lem generally require a quadratic-order matching step
somewhere.

• If the system requires either high availability (due to con-
stant demand for its services) or high trustability (because
it handles potentially sensitive information, such as per-
sonal data), a centralized server provides a single point
where either accidental failure or deliberate compromise
can have catastrophic consequences.

For these reasons and others, many foreseeable future appli-
cations for software agents involve large numbers of agents
interacting with each other. Users may have a number of
agents operating on their behalf, and agents of any particular
user may have to communicate with other agents elsewhere
on the network in order to share information.

 

Why multi-agent systems are hard to build

 

While decentralized, multi-agent systems have several im-
portant advantages, one of the largest problems with them is

 

how agents are supposed to find each other. 

 

Each agent
should not have to know about (and, indeed, probably cannot
know about) every other agent, user, or resource on the net-
work. Instead, some mechanism by which agents may locate
only the useful agents on the network must be arranged.

This research focuses on the problems of a 

 

matchmaking 

 

ser-
vice, one designed to find groups of people with similar inter-
ests and bring them together to form coalitions and interest
groups. The intended scale of the matchmaking is that of the
entire Internet, an environment in which there are potentially
millions of users and millions of agents corresponding to
them. The domain and the large number of agents presents
difficult coordination problems, such as: 

• hierarchical, single-inheritance trees are often used for
such coordination, but there is no obvious a priori hierar-
chy in this application by which to organize the agents
(why would any one person’s interests be at the top of any
hierarchy? how would we know whom to pick, anyway?);

• asking other agents 

 

at random

 

 resembles diffusion in a
gas and is extremely slow—it means each agent could be
required to ask every agent on the network, guaranteeing
a solution that scales poorly; and

• a centralized approach runs into the problems mentioned
above of quadratic scaling, and also is subject to single-
point-of-failure problems if the central system either fails
or is compromised—an important point for an application
handling potentially sensitive data.

 

Finding the right cluster of peer agents: the core 
idea

 

To address these problems, this research considers an overall
organization which borrows ideas from 

 

computational ecolo-
gy

 

 [4], in which agents have only local knowledge, but self-
organize into larger units. The 

 

core ideas

 

 in the approach tak-
en here are to

• compare the agents’ information in a 

 

peer-to-peer, decen-
tralized

 

 fashion,

• use 

 

referrals

 

 from one agent to another and an algorithm
resembling 

 

hill-climbing 

 

to find other, more appropriate
agents when searching for relevant peers, in order to

• build 

 

clusters

 

 or 

 

clumps

 

 of like-minded agents, and to

•

 

use these clusters

 

 of similar or like-minded agents (whose
users therefore share similar interests) to 

 

introduce

 

 users
to each other and enable cluster-wide 

 

messaging

 

 between
users whose interests match.

• use a 

 

persistent

 

 agent that runs most of the time, for long
periods; the user does not start up the agent, get an imme-
diate result, and shut it down, but instead runs it in the
background for hours or weeks, while it uses “word of
mouth” to find and join appropriate groups of agents
whose users share the same interests.

 

How the resulting clusters can be used

 

Once agents have formed clusters—an ongoing and continu-
ous process for real agents on the Internet, due to the scale
and constantly-changing environment involved—how can
we use these clusters? There are many applications; this is a
short summary:

• Messaging into the group. A user whose agent is in some
particular group can send a message into the group—ei-
ther those other agents known directly by the user’s agent
to be in the same cluster, or transitively through all other
agents in the cluster by following cluster cache informa-
tion in a flooding algorithm. Thus, given some particular
granule on the user’s local agent, the user could ask his
agent to send a message to all other agents in the clump of
which this granule is a member.

• Introductions. The chain of referrals themselves can be
useful information, and can be exposed to the user under
certain circumstances. Not only can the user send mes-
sage to particular individuals (whether pseudonymously
or not), but the agent itself can facilitate a “flirtatious” sort
of introduction in which information can be symmetrical-
ly and gradually revealed, via cryptographic protocols.
Users could ask for an explicit introduction to particular
members of the cluster, or could instruct their agent to ac-
cept or solicit introductions when it looked like there was
a particularly good match available.

• Finding an expert. By using a combination of messaging
into the group and introductions, the clusters that a user’s
agent finds itself in can potentially be used to find experts
on the subject, since presumably such experts (if they, too,
are running the agent) will have their interests reflected in
the clustering. Here, a user could prepare a small piece of
prose, or find some existing message, which talks about
the subject for which the user wants an expert; the cluster-
ing algorithm could then generate a granule for this grain
and attempt to find a suitable cluster. Once found, it could
start the introduction process to acquaint the questioner
and the expert.



 

3

 

What is described in this paper

 

The following sections describe the algorithm used in a pro-
totype of the clustering system, and some recent simulation
results evaluating its performance. Earlier simulation results,
along with a description of the algorithm which emphasized
different aspects of Yenta-Lite’s operation, can be found in
[2].

Note that the algorithms described below are but a small
piece of the overall task. In particular, since the system han-
dles sensitive information such as people’s interests, fielding
the system on the Internet requires cryptographic privacy
safeguards are the subject of current research and, to keep this
paper short, are described elsewhere [1][3]. The entire sys-
tem, including such cryptographic safeguards, a user inter-
face, and other necessary elements, is called 

 

Yenta

 

; to avoid
confusion, the prototype described here is called 

 

Yenta-Lite 

 

or

 

YL

 

 for short.

 

The Approach

 

The overall goal is to form clusters of agents whose users
share similar interests. In order to do this, we must answer the
following questions:

• What does it mean to have an interest, and how do agents
know about these interests?

• How do we determine similarity of interests?

• How does a particular agent know which other agents to
contact?

• How can we form clusters of similar agents?

 

What does it mean for a user to have an interest, 
and how do we capture that computationally?

 

For the purposes of matching people by their interests, we as-
sume that these interests are 

 

capturable

 

 in some computer-
based form. At the moment, Yenta only deals with text, such
as electronic mail messages, the contents of various news-
group articles, the contents of the user’s files in a filesystem,
and so forth. The architecture of Yenta supports somewhat
different sources of information as well (such as World Wide
Web hotlists and homepages)—the crucial requirements for
any interest are 

 

a) 

 

they are represented in some electronic
form, hence captured by the computer, and 

 

b)

 

 there is some
way of comparing two potential interests and assigning a 

 

de-
gree of similarity

 

 between them.

As currently implemented, Yenta-Lite can examine the con-
tents of email messages, newsgroup articles, and user files
that the user has received, read, or written. The tests described
in this paper used 

 

newsgroup articles

 

 and 

 

email messages

 

only, as discussed in the section on evaluating Yenta-Lite’s
performance. Each individual message, article, or file being
compared is considered a 

 

document

 

; however, since Yenta
might eventually be comparing nontextual documents, we
use the term 

 

grain

 

 to refer to any individual chunk of bits as-
sociated with a user.

A user is deemed to 

 

have

 

 an interest if several grains are 

 

sim-
ilar

 

 to each other. Such a collection of similar grains is called

a 

 

granule

 

. A user may own many granules, each correspond-
ing to some separate interest; for example, a user who regu-
larly reads newsgroup articles on dogs and cars would pre-
sumably have two granules reflecting these disparate inter-
ests.

Two users, A and B, are deemed to 

 

share

 

 an interest if A has
at least one granule that is similar to at least one of B’s gran-
ule. Two or more users who share an interest are 

 

conceptually

 

in a 

 

cluster 

 

at the instant that they both possess similar gran-
ules; they are 

 

actually

 

 in clump at the instant their two agents
discover this similarity. A diagram illustrating this is below.

Suppose we have three users, A, B, and C. Suppose that A and
B are in a clump, and B and C are in a clump. Are A, B, and
C all in a clump together? Not necessarily. If A is interested
in dogs and cars, his associated granules are A

 

dogs

 

 and A

 

cars

 

.
If the other granules are B

 

dogs

 

, B

 

zebras

 

, C

 

dogs

 

, and C

 

guitars

 

,
then A, B, and C are all in a clump, because they all share an
interest in dogs. However, if C

 

dogs

 

 was instead C

 

zebras

 

, then
we have two clumps, one reflecting A and B’s interests in
dogs, and one reflecting B and C’s interest in zebras. B in this
case is in two clumps, while A and C are each in one clump.

 

How do we determine similarity of interests?

 

The fundamental assumption behind Yenta’s assessment user
similar of user interests is this: If two users both have several
documents which are similar to each other, then the users are
assumed to share an interest themselves.

In order to function at all, Yenta demands that any two grains

grain
grain

grain
grain

grain

grain

grain

grain
grain

grain

Agent #1

Agent #2

granule

granule

granule

c luster



 

4

can be compared to yield some measure of similarity. It is also
required that this measure be (at least) partially-ordered; for
example, a floating-point number, which reflects how similar
two grains are, is an acceptable representation. The Yenta ar-
chitecture allows more sophisticated similarities than scalar
numbers, but Yenta-Lite, and the results reported here, use
only scalars. At the moment, it is also assumed that this com-
parison operator is symmetric, e.g., that if A’s similarity to B
is 0.74, then B’s similarity to A is likewise 0.74. Future work
may explore the stability of the clustering algorithm in the
face of nonsymmetric comparison operators.

Since Yenta-Lite’s grains are all exclusively textual, we use a
straightforward keyword-vector text comparison metric.
(This is similar to SMART [10], which was used in an earlier
version of Yenta-Lite.) To compute similarity, we first stem
all words in any given document (e.g., remove prefixes and
suffixes and otherwise canonicalize the text), compute an in-
verse-frequency metric for each word in the document (so
that rare words with greater power to discriminate two docu-
ments from each other have greater weight than common
words which appear in most documents), and compute a vec-
tor which describes the document based on these. Given two
different documents, we can then take the dot-product of their
associated keyword vectors to compute similarity.

This is not the only way to do this, of course. For example,
consider WordNet [8], which is a semantic net that allows
comparing words based on how many links away one word is
from another, and in what direction (e.g., synonym, antonym,
superset, etc). Future implementations of Yenta may combine
keyword vectors and WordNet if the advantages (e.g., possi-
bly more resilience in the face of synonyms that rarely co-oc-
cur in a single document) outweigh the disadvantages (e.g.,
greater semantic “fuzz” in the comparison due to the greater
number of words investigated in any given document).

 

Forming clusters via referrals

 

We now come to the heart of the clustering algorithm. Given
that we have a multiplicity of agents with no central node and
no hierarchy, how can we reasonably form clusters which re-
flect the interests of the users?

The major steps are:

• Intra-agent initialization, known as 

 

preclustering

 

: Com-
bine grains into granules within a single agent.

• Inter-agent initialization, known as 

 

bootstrapping

 

: Find at
least one other agent with which to communicate.

• Walk referrals and cluster: Form clusters of like-minded
agents.

Only a quick summary of Yenta-Lite’s preclustering is given
here; more details have appeared elsewhere [2], along with
earlier simulatation results.

 

Preclustering

 

When an agent first starts running, it must determine what in-
terests its user possesses. It does this by collecting some sub-
set of the user’s email, newsgroup articles, and files; each
such item is known as a 

 

grain

 

. Each separate grain is consid-

ered for membership in a growing collection of granules.

Each grain is converted to a keyword vector, then compared
with all other grains not yet part of a granule via dot-products.
An agglomerative algorithm is used to increase the size of
any given granule until no grain is within a high enough
threshold (which also depends on the variance in the data) to
“stick” to the granule; we then start building another granule
This process of producing granules is relatively time-con-
suming (it has several 

 

O(n

 

2

 

)

 

 steps in it), but must be done
only once for any given collection of the user’s grains, and it
appears to produce acceptable results. As the user’s collection
of files or new messages grows, additional grains may be in-
crementally added to existing granules, and new granules cre-
ated when the pile of un-added grains becomes too large.[2]

 

Boostrapping

 

The next phase requires finding at least one other agent with
which to communicate; finding more after that is easier—due
to other agents’ rumor caches—in that it is less likely that we
will require either ad-hoc heuristics or user intervention. In
Yenta-Lite, we finess this problem and assume that we can al-
ways find another agent. Several heuristics are availabie for
true Yenta, including broadcasts and directed multicasts on
local network segments to find other agents in the same orga-
nization; asking a central registry which contains a 

 

partial

 

 list
of other known agents; and asking the user for suggestions.
All of these heuristics have various advantages and disadvan-
tages, but we shall not pursue them here.

 

Data structures used in finding referrals and clusters

 

We now come to the step in which the various granules in
agents form clusters with other granules. For concreteness,
assume that we have two agents, named A and B, which each
have a few granules in them, e.g., 

 

G

 

A0

 

, 

 

G

 

A1

 

, etc. Each agent
also contains several other data structures:

• A 

 

cluster cache, CC,

 

 which contains the names of all oth-
er agents currently known by some particular agent as be-
ing in the same cluster. Thus, if agent A knows that its
granule 1 is similar to granule 3 of agent B, then 

 

CC

 

A

 

 con-
tains a notation linking 

 

G

 

A1

 

 to 

 

G

 

B3

 

. There are two impor-
tant limits to the storage consumed by such caches: 

 

g

 

l

 

(“local granules”), the number of separate granules that
any given agent is willing to remember about itself; and

 

g

 

r

 

 (“remote granules”), the number of granules this agent
is willing to remember about other agents. The total size
of 

 

CC

 

 is hence 

 

g

 

l

 

 times 

 

g

 

r

 

. In Yenta-Lite, these are essen-
tially unbounded; in an implementation that wishes to
save space, limiting 

 

g

 

r

 

 before limiting 

 

g

 

l

 

 would seem to
make the most sense, as this limits the total number of
other agents that will be remembered by the local agent,
while not limiting the total number of disparate interests
belonging to the user that may be remembered by the lo-
cal agent.

• A 

 

rumor cache, RC,

 

 which contains the names and other
information (described below) from the last 

 

r

 

 agents that
this agent has communicated with. In Yenta-Lite, 

 

r 

 

is ar-
bitrarily set to 5, and it should definitely be bounded in
true Yenta as well, since otherwise any given agent will



 

5

remember 

 

all

 

 of the agents it has ever encountered on the
net and its storage consumption will grow without bound.
Reasonable values for bounds in real-life operation with
large numbers of agents are currently unknown, but are
suspected to be on the order of 20 to 100.

• A 

 

pending-contact

 

 list, 

 

PC

 

, which is a priority-ordered
list of other agents that have been discovered but which
the local agent has not yet contacted.

The rumor cache contains more than just the names of other
agents encountered on the network. It also contains some sub-
set, perhaps complete, of the text of each granule correspond-
ing to those agents. Exactly how much of this text is stored
has several tradeoffs [2]; in particular, storing more text
makes possible heterogeneous comparison metrics between
different versions of Yenta running on the network, at a pos-
sible cost in space and security (due to the privacy implica-
tions of compromised agents) which must be ameliorated us-
ing cryptographic protocols not discussed here[3].

Getting referrals and doing clustering

Now that we have all this mechanism in place, performing re-
ferrals and clustering is relatively uncomplicated.

The process starts when some agent (call it A) has finished
preclustering and has found at least one other agent (call it B)
via bootstrapping. Agent A then performs a comparison of its
local granules with those of agent B, using a process reminis-
cent of the preclustering phase but simplified. A builds an up-
per-triangular matrix describing the similarities between each
of its local granules and those locally held by B. Then, rather
than taking averages and standard deviations, it simply finds
the highest score (e.g., closest similarity) between any given
granule (say, 

 

G

 

A1

 

) and B’s granules. If there is no such value
above a particular threshold, then the local granule under con-
sideration does not match any of B’s granules, although some
other local granule, e.g., 

 

G

 

A2

 

, might match.

The comparison process is simpler in the clustering (inter-
agent) phase than in the preclustering (intra-agent) phase in
part because two agents talking to each other cannot assume
that they have complete information about either each other
or the space of all possible other granules on the network.
Thus, we do not bother trying to calculate averages and stan-
dard deviations; as observed in the prototype, a simpler,
threshold-based match appears to work well enough.

When we are done comparing granules from A with granules
from B, agent A may have found some acceptably close
matches. Such matches are entered, one pair of granules at a
time, in A’s cluster cache. B is likewise doing a comparison
of its granules with A and is entering items in its own cluster
cache.

Whether or not any matches were found that were good
enough to justify entering them in a cluster cache, the next
step is to acquire 

 

referrals

 

 to agents that might be better
matches. In the example here, agent A asks agent B for the en-
tire contents of its rumor cache, and runs the same sort of
comparison on those contents that it did on agent B’s own lo-
cal granules. Good matches are added to A’s cluster cache, the

rest of the data is added to A’s rumor cache, and A’s namelist
is updated by adding to it those other agents which showed
good matches to A, that is, those agents which had granules
that went into A’s cluster cache. These agents will be contact-
ed next, after A finishes with B and any other entries in its
namelist. The various caches belonging to B that A has been
consulting were gathered by B in a similar way; every agent
participating in this protocol is thus building up a collection
of data for its own use and for the use of other agents.

This procedure acts somewhat like human word of mouth. If
Sally asks Joe, “What should I look for in a new stereo?” Joe
may respond, “I have no idea, but Alyson was talking to me
recently about stereos and may know better.” In effect, this
has put Alyson into Sally’s rumor cache (and, if Joe could
quote something Alyson said that Sally found appropriate,
perhaps into Sally’s cluster cache as well). Sally now repeats
the process with Alyson, essentially hill-climbing her way to-
wards someone with the expertise to answer her question.

 

Experimental Evaluation of the Algorithm

 

Previous work has investigated the number of messages that
must be exchanged to reach a high level of convergence, and
the quality of the resulting clusters, for small numbers of
agents (20 or less) [2]. That work showed that, relative to a
complete n-by-n crossbar comparison (the naive algorithm
which uses no clustering and no referrals), Yenta did not ex-
change an unreasonably larger number of messages (less than
a factor of two), yet achieved several important advantages
over such a centralized, brute-force solution:

• The clusters are grown incrementally for each agent,
so at any given time, each agent sees at least some of
many clusters.

• No agent need retain knowledge of all other granules
in the system at any time.

• If an agent were to disappear from the system, the only
lasting effect would be for other agents to “forget”
it—the rest of the clusters would still form.

Yenta has not yet been made available for widespread use on
the Internet, hence truly large-scale data on its performance
and behavior is not yet available. However, recent simula-
tions have supported this assertion for larger numbers of
agents.

In particular, the Yenta clustering algorithm has been simulat-
ed for various numbers of interests, typical sizes of its rumor
cache, and up to 1000 Yentas, and shown good performance
and convergence. Graphical results of these simulations are
presented on the last page of this paper, and discussed imme-
diately below.

Three different simulations are presented; for each, the for-
mat of presentation is identical. Each simulation is shown as
a series of images taken at various timesteps. The final state
of any given simulation is the large image on the right; the six
smaller images to the left of that image represent earlier stag-
es of the simulation, reading from left to right and top to bot-
tom.



 

6

Each Yenta in any given simulation was given a random in-
terest from the total number of interests available, and then
the size of its cluster cache was examined at each simulation
step, which indicates how successful it has been at finding
other Yentas which share its interest. For all Yentas that share
the same pair of parameter values (e.g., rumor cache size ver-
sus number of Yentas for the first simulation) and are hence
in the same bar of the display, the size of their cluster caches
were averaged. This average is then compared to the total
number of Yentas that 

 

could

 

 have conceivably been in the
cluster cache (if all Yentas sharing the interest had been
found), and that ratio is expressed as the percentage height of
the bar.

The first simulation shows the effect of varying the size of the
rumor cache for up to 1000 Yentas, given 30 different inter-
ests split amongst the Yentas. Roughly speaking, it shows that
the size of the rumor cache does not make much difference in
the speed of cluster formation for more than around 400 Yen-
tas.

The second simulation varies the number of possible interests
shared amongst the Yentas with the total number of Yentas,
given a rumor cache size of 50. As might be expected, it takes
longer to find all the other Yentas one would want as the num-
ber of interests increases or as the number of total Yentas in-
creases.

Finally, the third simulation shows the effect of varying the
size of the rumor cache for various numbers of interests, giv-
en 1000 Yentas. This seems to show that a rumor cache size
of 15 is enough for small numbers of interests, and that rais-
ing this size beyond 35, even for large numbers of interests,
does not buy us much.

 

Related Work

 

There are many efforts in distributed AI and multi-agent sys-
tems which could be considered relevant; here we consider
only other matchmaking systems and related approaches.

A common technique in systems that support computation
amongst a group of users is to centralize a server and have its
users act like clients. Systems that match user interests to
each other, and have such a centralized structure, include We-
bhound/Webdoggie [9] and HOMR/Ringo/Firefly[7].

Kuokka and Harada [6] describe a system that matches adver-
tisements and requests from users and hence serves as a bro-
kering service. Their system certainly is a matchmaker, but it
assumes a centralized architecture and a highly-structured
representation of user interests.

Others have taken a more distributed approach. For example,
Kautz, Milewski, and Selman [5] report work on a prototype
system for expertise location in a large company. Their proto-
type assumes that users can identify who else might be a suit-
able contact, and use agents to automate the referral-chaining
process; they include simulated results showing how the
length and accuracy of the resulting referral chains are affect-
ed by the number of simulated users and the accuracy and
helpfulness of their recommendations. Yenta-Lite differs
from this approach in using ubiquitous user data to infer in-
terests, rather than explicitly asking about expertise.

 

Conclusions

 

Yenta-Lite demonstrates that referral-based matchmaking
can provide acceptable results without requiring any one
agent to know about all other agents, and without requiring
unreasonable messaging traffic or computational demands.

 

Acknowledgments

 

I would like to thank undergraduate Bayard Wenzel for im-
plementing the initial prototype of these ideas, and express
my especially heartfelt thanks to Barry Crabtree of British
Telecom for his recent simulation results for large numbers of
Yentas. I would also like to thank my advisor, Dr. Pattie
Maes, for her advice and her support of this research. This re-
search has been supported in part by British Telecom.

 

References

 

[1] Foner, Leonard, “Clustering and Information Sharing in
an Ecology of Cooperating Agents, or How to Gossip without
Spilling the Beans,” 

 

Proceedings of the Conference on Com-
puters, Freedom, and Privacy '95 Student Paper Winner,

 

Burlingame, CA, 1995.

[2] Foner, Leonard, “A Multi-Agent Referral System for
Matchmaking,” 

 

PAAM ‘96 Proceedings

 

, London, England,
1996.

[3] Foner, Leonard, “A Security Architecture for a Multi-
Agent Matchmaker”, submitted to 

 

Autonomous Agents ‘97,

 

Marina del Rey, 1997.

[4] Huberman, B.A., editor,

 

 The Ecology of Computation

 

,
Elsevier Science Publishers B.V., 1988.

[5] Kautz, Henry, Milewski, Al, and Selman Bart, “Agent
Amplified Communication,” 

 

AAAI '95 Spring Symposium
Workshop Notes on Information Gathering in Distributed,
Heterogeneous Environments,

 

 Stanford, CA.

[6] Kuokka, Daniel, and Harada, Larry, “Matchmaking for
Information Agents,” 

 

Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI) '95,

 

 1995.

[7] Lashkari, Yezdi, Metral, Max, and Maes Pattie, “Collab-
orative Interface Agents,” 

 

Proceedings of the Twelfth Nation-
al Conference on Artificial Intelligence, MIT Press, Cam-
bridge, MA, 1994.

[8] Miller, George, Beckwith, Richard, Fellbaum, Christiane,
Gross, Derek, and Miller, Katherine, “Introduction to Word-
Net: An On-line Lexical Database,” Princeton University
Technical Report, 1993.

[9] Shardanand, Upendra, and Maes Pattie, “Social Informa-
tion Filtering: Algorithms for Automating ‘Word of Mouth,’”
Proceedings of the CHI '95 Conference, 1995.

[10] Zumoff, Joel, “Users Manual for the SMART Informa-
tion Retrieval System,” Cornell Technical Report 71-95.


