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CHAPTER 2

 

System Architecture

 

2.1 Introduction

 

In this chapter, we present a general architecture for a broad class of applications. As
discussed in Chapter 1, the architecture is designed to avoid centralizing information
in any particular place, while allowing programs run by multiple users to collaborate
by using information that each of them possesses. Such an architecture is particularly
useful for protecting personal information from unauthorized disclosure, but it also
has some advantages in terms of robustness various types of failure, including single
points of physical failure.

This chapter will describe the architecture by answering the following questions:

Section 2.2• The traits shared by the applications we are considering

Section 2.3• The problems are we 

 

not

 

 addressing in the space of possible applications

Section 2.4• For concreteness, our sample application

Section 2.5• The overall architecture proposed

Section 2.6• Determining one user’s 

 

characteristics

 

Section 2.7• Bootstrapping

Section 2.8• Forming groups of agents, including:

Section 2.8.1• Data structures used in clustering

Section 2.8.2• Getting referrals

Section 2.8.3• Privacy of the information exchanged

Section 2.9• Further clarification on the exact nature of a cluster

Section 2.10• Some uses for the resulting groups

Section 2.11• Reputation systems

Section 2.12• Running more than one copy of the application on a single host

Section 2.13• Hooks for collecting evaluation data

As discussed in Chapter 1, we obtain a large amount of our privacy and security pro-
tection from a 

 

decentralized architecture

 

; that architecture is discussed in this chapter.
We obtain other elements of protection from the techniques and principles advanced
in Chapter 3; that chapter is heavily dependent upon this one.
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Some technical privacy 
issues are explained in this 
chapter

 

In a few sections of this chapter, we delve into particular aspects of privacy and secu-
rity in advance of Chapter 3’s coverage. We do so because certain strategies for pro-
tecting user privacy are more easily explained near the description of some
architectural feature than they are in a separate chapter.

 

Several issues are deferred

 

This architectural description defers several topics to later chapters. Some of the
design decisions made here will be clearer when the entire picture has been presented.
In particular, later chapters will specify:

Chapter 3 • How the privacy and security of the architecture really work

Chapter 4 • Details of how the sample application, Yenta, makes use of this architecture

Chapter 5 • How to evaluate how the system as a whole is performing

Chapter 5 • Other applications besides the sample application

 

2.2 Application traits

 

In the discussion that follows, we take 

 

user

 

 to be some individual person, 

 

application

 

to be some particular user task which is implemented by running a program, and 

 

sys-
tem

 

 to be a set of interconnected users, all running copies of some piece of code that
implements the application. A familiar example of such a definition would be the

 

Internet mail system

 

, which consists of users all running applications (mail readers)
which all do the same task, even though the applications themselves are not all identi-
cal—they run on different computers, come from different vendors, and have a differ-
ent set of features which they implement. Note that the Internet mail system does not
quite fit the definition given below of the applications we support; it serves only to
make clear what we mean by 

 

user, application, 

 

and 

 

system.

Systems, applications, 
users, instances, and 
agents

 

For clarity, let us distinguish between the concepts of an 

 

application

 

 and an 

 

instance
of an application

 

. The 

 

application

 

 itself is the body of code that users may run; it is
the same for all users who run the same version. The 

 

instance

 

 of that application is the
individual copy that any given user is running on some machine, and includes what-
ever personalized state may exist for the user. In the discussion that follows, we refer
to an individual instance of some running application as an 

 

agent.

 

 (Some examples
and definitions of agents may be found in [16][27][30][31][45][46][59][60][88][98]
[101][106][112][113][114][143][159][160][162][163][164]—and many which are
not listed there are mentioned at appropriate points elsewhere in this dissertation). We
define an 

 

agent

 

 here to be a semiautonomous piece of software running on a particular
computer, which may be personalized and has long-term state. We do 

 

not

 

 consider
anthropomorphism or the ability to move the thread of control to another machine
(e.g., process migration) to be a part of the definition we use here. The application is
implemented by users running a distributed system of agents.

Let us turn to the traits which are shared by all the applications we are considering.
Later sections will justify some of the assumptions and limitations.

• More than one user exists in the system. If there is only one user running the appli-
cation, then we do not consider it a system.

• The users, and the agents they run, are all 

 

peers

 

 of each other. There is no distin-
guished user or agent, and no pre-established hierarchy.

• The application requires that some of its users wish to interact with some of the oth-
er users, by sharing some information between them.

• Not every user, nor his or her agent, need know about every other user or agent, nor
does any user or agent require complete information about all other users or agents.

• It is appropriate to group users, on the basis of some attribute, into 

 

clusters

 

 which
all share, to some extent, that attribute. Any given user might be in more than one
cluster simultaneously, depending on the user’s attributes.
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• It is possible to form a 

 

partial order

 

 among user characteristics, such that we can
say that some characteristic of user A is more like user B than user C.

• It is likely that at least some of the information in the system should be protected
from disclosure to others, either inside the system or outside of it.

• Each of the users of the system can run their own copy of the application, on some
computer at least nominally under their own control.

• The users are connected via a high-availability network, such as the Internet.

If there is no way to compare user characteristics, and no way to group users into even
approximate clusters based on similarity of those characteristics, than many of the
assumptions of our architectural model are violated. In particular, the architecture
assumes that it can 

 

climb a gradient

 

 in order to form clusters (see Section 2.8), and
that many operations are restricted to 

 

users in a particular cluster

 

. If these are not
true, then the architecture may not work very well. (Whether it works well enough
even if some assumptions are violated is dependent upon exactly what the application
is; we shall not further investigate what the properties of such an application might
be.)

Because we are assuming that there exists information in the system that should be
protected against others, and because of the arguments advanced in Chapter 1, partic-
ularly in Section 1.5, about the problems of 

 

trust

 

 when it comes to centralized sys-
tems, we assume that users must have the ability to do local processing of information
they consider to be confidential. This requires that users have access to a computer
that can run the application, and which they may be reasonably assured is under their
administrative control, not that of some third party. Systems in which users must do
computation in environments they do not control are explicitly not addressed by this
work.

The applications we are considering are based around the controlled sharing of infor-
mation between users. To this end, we assume that there is some way for the users’
agents to actually 

 

communicate

 

 with each other, such that we define the set of agents
as a 

 

system.

 

 For simplicity of discussion, we assume that this requires a network link-
ing all agents in close to real time, e.g., the Internet. Generalizations of the fundamen-
tal architecture can certainly be made for 

 

store-and-forward

 

 networks, such as is
usually assumed for mail transfer systems, and systems in which users are only infre-
quently connected—such as home users who only occasionally dial up to talk to the
network—but we shall not explicitly address those considerations here. Most of the
architecture we present is still usable in such a system, albeit with much greater
delays between transactions between agents. Such delays may make the applications
inconvenient to use in practice, even if they are theoretically still functional.

 

2.3 Application traits 
we are not 
considering

 

It is clear that the criteria above do not apply to all possible applications. For example,
if there is only one user running the application, then we do not consider it a 

 

system

 

 at
all. And if no user needs any information from any other user, then again it is not a

 

system

 

, because all the individual copies of the application do not interact with each
other, and are running standalone, in a disconnected configuration. 

By the same token, we assume that, even though users must communicate with each
other, we never have 1-to-

 

n

 

 or 

 

n

 

-to-

 

n

 

 interactions, where 

 

n

 

 is the set of all users or all
agents in the system. There are two reasons to disallow such scenarios:

•

 

Robustness

 

. Systems in which any entity, or all entities, must see every other entity
in the system tend to become extremely fragile as the number of entities grows.
One way to see this, in a distributed system, is to take as a given that some proba-
bility 

 

p

 

 that some single entity will be offline for some reason—such as crashes,
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network disconnections, and so forth. We assume that there is no redundancy (all
entities must be online and known), that failures are independent of each other, and
that there are 

 

n

 

 entities in the system. This means that the chance that the system as
a whole scales exponentially poorly with 

 

n

 

. Clearly, such a system will almost nev-
er function if 

 

n

 

 is large and 

 

p

 

 is not very close to zero.

•

 

Security

 

. Implementing the system as a 

 

non-

 

distributed, e.g., centralized, system,
can help with performance—if the central node is up, then presumably all informa-
tion about all entities is known at that time and may be used. However, this still has
unfortunate implications for security, since we have now established a single point
of failure at which all entities’ information may be compromised. If the system is
instead decentralized, but all entities must still know all other entities’ information,
then the number of points where 

 

all

 

 entities’ privacy may be compromised has now
risen to 

 

n

 

, the number of entities in the system. The situation is now worse, not bet-
ter. We shall have much more to say about the security implications of our assump-
tions in Chapter 3.

 

2.4 Yenta—the 
sample application

 

For concreteness, let us mention here the 

 

sample application—Yenta—

 

that has been
developed. Yenta was developed both to test the architecture, and to serve as adver-
tisement and role model for the technique. (Recall, from Chapter 1, that the purpose
here is to encourage other developers and systems architects to use these techniques
to avoid depriving users of their privacy in those other applications.) We will give
much more information about Yenta’s operation in Chapter 4—this is only a very
brief summary.

Yenta is a 

 

matchmaking system.

 

 Yenta is 

 

not

 

 necessarily a romantic matchmaker.
Instead, it is designed to facilitate 

 

serendipitous introductions

 

 of people who may or
may not know each other, and to support 

 

group interaction

 

 among users who share
common interests. Two possible scenarios of Yenta’s use are:

•

 

Inside a company.

 

 Many organizations often have the problem that people who

 

should

 

 know what each other are doing do not. This is commonly the problem
when two people are working on a similar problem, but report to different manag-
ers. In this case, it may be that the common point in their reporting structure is suf-
ficiently high in the hierarchy that it fails to allow either of the two individuals to
know about each other’s work. While one might hope that the two individuals
might meet accidentally and happen to mention their work to each other, such an
event is not assured. (Even if the two do meet, they may fail to mention their com-
mon interest—it is rare that people regale each other with a list of 

 

everything

 

 they
are working on at the moment.) Yenta aims to help, by serving as an introducer for
these two, based on this common interest.

•

 

Among people who have never met.

 

 Here, the problem is one of attention and inter-
actional bandwidth. Even if we assume, for instance, that people who share a sim-
ilar interest happen to both be on the same mailing list or Usenet newsgroup, not
everyone posts. Indeed, if everyone 

 

did

 

 post, traffic volume might be so high that
keeping up with the discussion might prove impossible. Yenta aims to help intro-
duce 

 

lurkers

 

—those who rarely or never post—to others who share their interests,
without forcing them to speak publicly, and without subjecting everyone to the re-
sulting traffic.

Each user runs his or her own copy of Yenta. Each Yenta determines its user’s interests
by scanning his or her electronic mail and files—this is one of many reasons why
Chapter 3’s discussion of privacy and security is so important. Agents join 

 

clusters

 

 of
others, whose users share one or more interests, and users may send messages to indi-
viduals in the cluster or to the entire cluster as a whole. Users are pseudonymous, and
their identities are never revealed by Yenta itself. (If a user sends a message to another
that explicitly states his or her identify, that is not Yenta’s concern.) Because pseud-
onyms are the norm, Yenta also makes available a 

 

reputation system

 

 to aid in deter-
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mining whether to accept an introduction to another user, to help provide some
context in interpreting another user’s messages, or to enable automatic rejection of
messages from users whose reputations are not good enough.

 

2.5 The overall 
architecture

 

The overall system architecture is a 

 

distributed, multi-agent system

 

. Each user runs
his or her own copy of the application—an agent. The agent has access to persistent,
storage on the user’s computer, e.g., a filesystem. This filesystem is used to store state
across crashes and shutdowns. It may also be used for other purposes—for example,
in Yenta, it is used as the source of the user’s interests. The agent is assumed to run for
long periods of time—effectively indefinitely—rather than being started up and shut
down soon thereafter. It is thus assumed to be available to the user, and the rest of the
network, most or all of the time. All communications and on-disk storage are assumed
to be encrypted; Chapter 3 has much more to say about this requirement.

Agents communicate with each other by opening connections to each other across the
network (using TCP [135] except in certain unusual circumstances, as below). Since
not all copies of the given application should be assumed to be the same version,
agents should identify themselves early in any given communication by specifying
their current version information, a list of protocols or operations handled, or both—
this aids in interoperability, allowing newer agents to be backwards-compatible with
older agents where feasible.

Each agent must also be able to communicate with its user. We assume, for simplicity,
that the user possesses a web browser, and the agent speaks HTTP [12][52] to that
browser. This greatly simplifies design of the application, since emitting HTTP is a
much easier implementation challenge than the engineering that goes into the typical
browser.

A diagram of the basic structure appears below.

 

2.6 Determining one 
user’s characteristics

 

The architecture assumes that users have particular 

 

characteristics

 

 that make them
suitable candidates for 

 

clustering

 

 into groups. Members of the group share at least
one characteristic, to some degree, in common. How these characteristics are deter-
mined is in large part application-specific; we discuss the case for Yenta in
Section 4.7.

 

An example from Yenta

 

We assume that these characteristics are 

 

comparable

 

 in some algorithmic fashion. We
specified this in Section 2.2 when we said that we must have a partial order available
in comparing one user’s characteristics to another. In the case of Yenta (see
Section 4.4.4), these characteristics are sets of weighted vectors of keywords, and the
comparison is performed by dotting vectors together.

Any given user may have several characteristics. For example, in Yenta, any given
user is presumed to have several interests at the same time. These characteristics are
assumed to be sufficiently different from each other that our comparison function con-

 

Figure 1: Yentas talk to each other and to their users’ web browsers
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siders them dissimilar from each other—if this were not the case, then at least two of
these characteristics should be merged into a single characteristic.

 

2.7 Bootstrapping

 

When an agent is starting up for the very first time, it may not know, a priori, of any
other agents for the application. In this case, it may use a bootstrapping phase in
which it undergoes a discovery process that finds at least one other instance of the
application. After this bootstrapping phase is accomplished, it need not be repeated.

This bootstrapping process can take many forms. Examples include:

• Broadcasting on the local network segment, for networks that support broadcasts

• Asking the user for any other machines known to be running the application

• Having existing agents periodically register their existence with a central server—
the 

 

bootserver—

 

and having newly-created agents ask this server for possibilities

 

Security of the bootserver

 

Yenta uses all three of these strategies. We shall have more to say about the security
implications of this in Chapter 3; however, note for the moment that the only relevant
aspect of this bootstrapping phase is that the agent find 

 

any

 

 other instance of itself
with which to communicate. That instance need not share any of the user’s character-
istics. This makes design of the bootstrap server both simple and secure, since it need
not maintain any identifiable user information, except the IP address at which some
agent was found recently—for most applications, this is not a serious infringement
upon user privacy. If the database is accidentally destroyed, it will be regenerated as
running agents periodically register. The central server may also, of course, be spe-
cific to a particular organization if desired, rather than there being a single such server
on the entire Internet.

Note that if the application being considered is so ubiquitously deployed that the
chances are very high of another one of its agents existing on the local broadcast net-
work segment, or of a new user already knowing of another agent, the central server
becomes redundant.

 

Bootstrap broadcasts are 
very different from cluster 
broadcasts

 

Be aware that agent broadcasts, used in the sense we mean here for bootstrapping, are

 

not

 

 the same sort of mechanism that we specify in Section 2.10, when we talk about
communicating with a group of other agents. This is an important distinction:

•

 

Cluster broadcasts

 

, as described in Section 2.10, use 

 

encrypted, point-to-point

 

transmission of messages, which are then recursively flooded to neighboring agents
using the same mechanism. The flooding algorithm is designed to prevent loops by
detecting graph cycles. Messages are transmitted via TCP [135].

•

 

Bootstrap broadcasts,

 

 as described here, use 

 

cleartext, broadcast-medium

 

 trans-
mission. On IP networks, this use is accomplished via UDP [134], since UDP sup-
ports broadcast, whereas TCP does not. Since we are not transmitting any personal
information in a bootstrap broadcast—indeed, since the broadcasting agent may
not 

 

have

 

 any yet—and since the message is intended for maximum reception, we
do not encrypt its contents.

 

Broadcast responders 
must wait a random time 
before responding!

 

For broadcasting to work, all agents must be prepared to listen for, and respond to,
bootstrap broadcasts. In general, both broadcast requests and replies should include
information about the application—to enable multiple applications to share the same
port—and its version—to enable backwards-compatibility with older applications. In
addition, listeners on Ethernet-like [82] networks 

 

must

 

 implement 

 

random delay

 

 in
their responses, so as to avoid a 

 

packet storm

 

 due to collisions on the wire caused by
many agents responding at exactly the same time. Ethernet implementations are gen-
erally designed to incorporate 

 

random exponential backoff,

 

 such that collisions cause
all transmitters to wait a random, exponentially-increasing amount of time before
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each retransmission, but such packet storms can still last tens of seconds on a network
segment with many responders. In the case of Yenta, for example, agents responding
to a broadcast wait a random time, continuously and uniformly distributed between 0
and 2 seconds, before responding to any request. Since transmitting a packet takes
between 10 and 100 microseconds, the chances of many responses colliding are negli-
gible.

 

2.8 Forming groups 
of users—clustering

 

We now come to the core idea which makes our distributed system function, namely

 

how agents are supposed to find each other

 

 and how they 

 

organize into clusters

 

.

Any given agent starts knowing at least one other agent, via the bootstrapping mecha-
nisms described in Section 2.7 above. Agents then use 

 

one-to-one

 

 communication of
their characteristics, and a 

 

referral algorithm

 

, to find suitable clusters.

 

2.8.1 Data structures used 
in finding referrals and 
clusters

 

For concreteness, assume that we have two agents, named A and B, which each have a
few characteristics associated with them, e.g., 

 

C

 

A0

 

, 

 

C

 

A1

 

, etc. Each of these character-
istics describes something about the agent’s user. Each agent also contains several
other data structures:

• A 

 

cluster cache, CC,

 

 which contains, for each characteristic, the names of all other
agents currently known by some particular agent as being in the same cluster for
that characteristic. Thus, if agent A knows that its characteristic 1 is similar to char-
acteristic 3 of agent B, then 

 

CC

 

A

 

 contains an entry linking 

 

C

 

A1

 

 to 

 

C

 

B3

 

. There are
two important limits to the storage consumed by such caches: the number of 

 

local
characteristics, c

 

l

 

, 

 

that any given agent is willing to remember about itself; and the
number of 

 

remote characteristics, c

 

r

 

, that this agent is willing to remember about
other agents. The total size of 

 

CC

 

 is hence bounded by 

 

c

 

1

 

 times 

 

c

 

r

 

. In an implemen-
tation that wishes to save space, limiting 

 

c

 

r

 

 before limiting 

 

c

 

l

 

 makes the most sense,
as this limits the total number of other agents that will be remembered by the local
agent, while not limiting the total number of disparate characteristics belonging to
the user that may be remembered by the local agent.

• A 

 

rumor cache, RC, which contains the names and other information, as described
below, from the last r agents that this agent has communicated with. Implementa-
tions should bound this number, since otherwise any given agent will remember all
of the agents it has ever encountered on the net and its storage consumption will
grow monotonically. Reasonable values for bounds are application-specific; Yenta
uses values of 20 to 100.

• A pending-contact list, PC, which is a priority-ordered list of other agents that have
been discovered but which the local agent has not yet contacted.

The rumor cache contains more than just the names of other agents encountered on
the network. It also contains some subset, perhaps complete, of the value of each
characteristic corresponding to those agents. Exactly how much of each characteristic
is stored is application-specific.

2.8.2 Referrals and 
clustering

Now that we have all this mechanism in place, performing referrals and clustering is
relatively uncomplicated.

Comparing one agent 
with another

The process starts when some agent (call it A) has ascertained its user’s characteris-
tics, and has found at least one other agent (call it B) via bootstrapping. The two
agents exchange characteristics. Agent A then performs a comparison of its local
characteristics with those of agent B. Agent A builds an upper-triangular matrix
describing the similarities between each of its local characteristics and those locally
held by B. Then it finds the highest score(s)—e.g., closest similarity—between any
given characteristic (say, CA1) and B’s characteristics. If there is no such value above
a particular threshold, then the local characteristic under consideration does not match
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any of B’s characteristics, although some other local characteristic, e.g., CA2, might
match.

Note that this inter-agent similarity metric cannot, in general, assume that it knows
about all or even most of the other agents on the network. Hence, algorithms which
assume that they can take means or do standard deviations to compute whether this is
a particularly good match do not have the data to make this determination. Instead,
the application must either use fixed thresholds, or attempt to refine its criteria after
seeing some number of other agents’ characteristics—which implies that the compar-
ison metric is nonmonotonic, e.g., that it may behave differently for different inputs
based on its prior history. In the sample application—Yenta—a simple thresholding
scheme is used.

When we are done comparing characteristics from A with characteristics from B,
agent A may have found some acceptably close matches. Such matches are entered,
one pair of characteristics at a time, in A’s cluster cache. B is likewise doing a com-
parison of its characteristics with A and is entering items in its own cluster cache for
its own use.

Comparisons are not 
symmetric

Since each agent is making its own determination of similarity, and since they may be
running different versions of the application, or have different local data available—
nothing specifies that an agent must transmit all of its information about a particular
characteristic to any given other agent—they may reach different conclusions. In
other words, A may decide that B shares some characteristic with A, whereas B may
not decide that it shares any characteristics with A. This asymmetry is perfectly
acceptable. In the case above, it means that A will enter B in its cluster cache for some
characteristic, but B will not enter A in its cluster cache for any characteristic.

Getting referrals Whether or not any matches were found that were good enough to justify entering
them in a cluster cache, the next step is to acquire referrals to agents that might be
better matches. In the example here, agent A asks agent B for the entire contents of its
rumor cache, and runs the same sort of comparison on those contents that it did on
agent B’s own local characteristics—but with a more forgiving threshold for what
constitutes a good match. For example, if the comparison metric were to return a
value between 0 and 1, ranging from no match to perfect match, then the threshold
used to determine whether to add some characteristic from B to A’s cluster cache
might be 0.9, while the threshold used to determine whether a rumor-cache match is
good enough might be 0.7.

The purpose of using a more forgiving threshold is to allow A to find someone else
who might be reasonable, even if they aren’t a great choice. Agent A will then add the
agent corresponding to each such match to its pending-contact list, and will contact
them in turn.

Agent A, having now acquired some likely candidates, will execute the same algo-
rithm it just used with B: It will see if any of the agents is suitable to be added to A’s
cluster cache, and will also find other candidates who might be worth contacting. If
the pending-contact list is kept sorted by desirability—presumably, by sorting the
pending agents to contact by the result of the comparison metric—then A is executing
a hill-climbing algorithm to finding a good match. In other words, if we model a land-
scape in which the height of any given hill is its similarity to some characteristic of
A’s, and A’s current set of candidates as some point on the hillside, A should attempt
to always travel in the direction of maximum upward gradient, essentially climbing
hills in this space until it reaches a maximum. Note that we are climbing a different
landscape, composed of different hills, for each characteristic.
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Hill-climbing versus local 
maxima

Hill-climbing algorithms can get stuck at local maxima which are not global maxima.
In practice, this appears not to happen in our sample application, neither in simulation
nor in actual use. To get stuck at a local maxima requires that the system act thermo-
dynamically cold, in the sense of simulated annealing. Here the metaphor is one of
energy—a marble rolling around in a potential well cannot escape this well unless it
possesses enough energy to roll uphill past an adjacent peak. Similarly, one balanced
on a hillside might roll into the valley, but cannot hope to reach an even higher hilltop
unless it something gives it extra energy. Random additions of extra energy—which
may eventually roll a marble out of a stuck state—are thus similar to heating a system,
hence we can talk about the thermodynamic temperature of a system.

Real data appears to be noisy enough that local maxima which are not global maxima
are not a problem—there is enough inaccuracy in the comparison function, and in the
data it is applied to, that agents do not get stuck. Furthermore, in a real system, one
might expect that agents are constantly joining (and perhaps leaving) clusters, which
will also tend to disrupt many such local maxima—it only takes one new agent that is
a little better matched to knock some agent off its local maximum.

It is entirely possible that one can generate disconnected islands of agents which do
not know about each other, and there is no feasible way to completely eliminate this
possibility if we assume—as we do explicitly in Section 2.2—both that there is no
central point in the system that knows about all agents, and that no agent is required to
know about all others. However, such islands are likely to be rare, for several reasons:

• The bootstrap server (see Section 2.7) tends to tell brand-new agents about many
existing agents, all over the world, which tends to ensure a wide sample of starting
agents.

• It only takes one bridge between two formerly-disconnected islands to inform a
large numbers of agents about each others’ existence. The referral algorithm tends
to encourage this behavior, since many agents will spread the news.

Metrics must allow a 
partial order

Of course, for this to work at all, the comparison metric must make available a gradi-
ent, via a partial order, as specified in Section 2.2—this is why the comparison func-
tion must not be a simple, binary predicate. Exactly how this predicate works is
application-specific, but it must return some scalar value that we can compare. Issues
of thermodynamic noise also tend to avoid pathologies, such as partial orders that lead
to cycles (A>B>C>A). It may be the case that some applications can suffer from this
problem; but we have not observed it here, and determining the exact conditions
under which such pathologies might occur is beyond the scope of this work.

If we do not have a comparison metric which allows hill-climbing, then the referral
process degenerates to a process more resembling diffusion in a gas—each agent sim-
ply explores the space of other agents at random. Results will still be obtained in this
scenario, but very slowly—the situation goes from something approximately O(n) to
O(n2). Another way to look at this is to imagine that each agent is walking around in
some physical space: a gradient-driven process moves the agent O(n) steps from the
origin, where n is the number of iterations, whereas a random process moves the
agent only O( ) steps from the origin.

Cluster cache is not for 
third-party data

Note that agent A never adds some agent, say W, to its cluster cache on the basis of
B’s say-so. After all, B’s idea of W’s characteristics could be wrong for any number of
reasons. For example:

• W’s data might be out-of-date or otherwise stale.

• W might have deliberately omitted some data in its transmission to B, perhaps
based on some aspect of B’s network address or reputation (see Section 2.11).

• B’s idea of W’s data might not even truly belong to W at all—see Chapter 3 for why
this might be so.

n
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For all of these reasons, we use B’s rumor cache information only to add potential
candidates to A’s pending-contact list. When A eventually contacts any given candi-
date, a good match will be added to A’s cluster cache in the usual way.

Referrals are like human 
word-of-mouth

This procedure acts somewhat like human word of mouth. If Sally asks Joe, “What
should I look for in a new stereo?” Joe may respond, “I have no idea, but Alyson was
talking to me recently about stereos and may know better.” In effect, this has put Aly-
son into Sally’s pending-contact list (and, if Joe could quote something Alyson said
that Sally found appropriate, perhaps into Sally’s cluster cache as well). Sally now
repeats the process with Alyson, essentially hill-climbing her way towards someone
with the expertise to answer her question.

2.8.3 Privacy of the 
information exchanged

The description so far suffers from a number of unfortunate security problems. For
instance, when agent A sends its characteristics to agent B, B knows everything that A
sees fit to tell it—and also knows A’s IP address, hence making backtracing the infor-
mation to the actual user possibly very easy. Furthermore, B will propagate informa-
tion about A to any third parties which may care to ask B for its rumor cache, and this
will continue to be true until B decides to flush A’s information from its rumor
cache—which could be never, since when to flush this information is entirely at B’s
discretion.

We have two strategies for avoiding this outcome: hiding the identity corresponding to
any given characteristic, and mixing others’ clusters into the local user’s data. In
practice, we do both.

Hiding identities via 
random reforwarding and 
digital mixes

We can use several strategies to hide the identity corresponding to a given characteris-
tic. Techniques related to random reforwarding and digital mixes are discussed more
extensively in Section 3.4.3. They depend both on anonymity of individual agents and
the ability to broadcast into groups of agents, using keys known only to a subset.

Plausible deniability via 
other agents’ data

One way of establishing a user’s probable or possible innocence—in the terminology
of Section 3.2.2—without having to go to the extremes of Section 3.4.3 is by includ-
ing other users’ data with our own. To enable plausible deniability of characteristics,
it suffices for an agent to lie. In addition to offering its own characteristics, the agent
can offer some characteristics that are currently stored in its rumor cache. By defini-
tion, such characteristics are not only not those of the offering agent, but they do not
even reflect any of its own characteristics accurately—if they did, they would be in
the agent’s cluster cache, not its rumor cache. The agent offering the characteristics
certainly knows which ones came from its cluster cache—and thus reflect the charac-
teristics of its user—and which came from the rumor cache—and thus do not. How-
ever, the agent receiving these characteristics has no way to know.

Depending on the size of its rumor cache, the deceitful agent could easily be able to
offer, say, ten times as many characteristics as it really owns. Thus, the probability of
any single characteristic offered by the agent actually reflecting some characteristic of
its user would be only 10%. Assuming that an agent is willing to store arbitrarily
many characteristics in its rumor cache—and is willing to subject it and all of its peers
to an arbitrary amount of work—this percentage can be made arbitrarily low.

In order to know which characteristics actually belong to a given agent, an attacker
would have to be a party to many exchanges, looking for those characteristics which
are always offered—such characteristics presumably correspond to the real character-
istics of the agent’s user. This attack could only work if the agent of interest either
offers only subsets of its rumor cache, or runs long enough to flush entries from its
rumor cache. A local eavesdropper—one who can listen to all of the given agent’s
traffic—could not accomplish this, because we assume, as advanced in Chapter 3, that
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all communications are routinely encrypted. Instead, the attacker would have to actu-
ally compromise many agents on the network, and each of those agents would have to
interact with the target agent, for the attack to succeed. While this is possible, it vio-
lates our assumption in Section 3.2.1 that an attacker does not control an arbitrarily
high proportion of all agents with which the target agent interacts.

2.9 What exactly is a 
cluster?

In the discussion above, we have used the term cluster as if it denotes a particular,
well-defined group of agents, and as if all agents within the cluster agree on its mem-
bership. This is not in fact the case. Let us examine the meaning of a cluster more
closely.

A cluster is not a simple 
transitive closure

Consider the point of view of a single agent A, which believes itself to be in a cluster
of agents which share characteristic C. This cluster is composed of all other agents in
A’s cluster-cache for C. It is also composed of all of their cluster-cache entries for
characteristic C, and so on. In other words, if we treat the existence of some agent B
in some agent A’s cluster cache as a unidirectional link from A to B, then A’s cluster is
the transitive closure, starting from A’s cluster cache for C, of all agents which are
reachable by traversing these links. The links are unidirectional, e.g., forming a
digraph and not a graph, because membership in a cluster cache is not guaranteed
symmetric—see Section 2.8 above.

If all agents shared exactly the same value for C, then this definition could be recur-
sively enumerated by A, simply by walking this digraph, keeping track of which
agents have been visited, in the manner of a mark-sweep garbage collector [90]. One
might argue that A shouldn’t walk this digraph—this would eventually result in A
having to remember every agent in its cluster, which violates the architecture criteria
in Section 2.2—but it would at least be theoretically possible.

Characteristics are likely 
to be unique

However, all agents presumably do not have exactly the same value for C. We assume
that characteristics may be complicated entities, capable of taking on a large number
of values. For example, in Yenta—see Chapter 4—characteristics are weighted vec-
tors of keywords. In this application, the exact makeup and weighting of any vector is
unlikely to be reproduced by any other agent.

An example from YentaContinuing our Yenta-based example, suppose that we have three agents, each with
slightly different interests. Yenta X’s user is interested in cats. Y’s user is interested in
both cats and dogs. Z’s user is interested in dogs. A schematic of this situation appears
in Figure 2 below, where ellipses represent—approximately—the set of agents each
Yenta considers to be in its own cluster. Note that the cluster names, C1-3, are for
explanatory convenience only—as we stated immediately above, clusters have no
overall name of their own, but are described only by the set of which agents consider
themselves to have similar characteristics.

Figure 2: Clusters and overlaps

Cats
Cats
Dogs Dogs

Yenta X

Yenta Y

Yenta Z
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Assume, for the sake of discussion, that the metric which compares interests looks
only at overlaps in words in the keyword vectors exchanged. This means that X and Y
consider themselves to be in cluster C1 (they are both interested in cats), and Y and Z
consider themselves to be in cluster C2 (they are both interested in dogs). However,
should X and Z consider themselves to be in the same cluster?

The answer is no. X and Z are not both in C1, C2, or even some third cluster, given the
interests expressed here. As far as we can tell from the comparison metric—which
states that a shared interest must involve an overlap in keywords—X and Z are not
interested in the same thing.

What is a gerrymandered 
cluster?

This means that X should not walk the digraph of all other agents’ cluster-cache
entries in order to compute which other agents are in its cluster—to do so would
incorrectly cause X to believe that Z is in cluster C1, when it most clearly is not.; Z’s
user has no interest in cats. We refer to such an outcome—in which X would believe
that Z is in cluster C1—to be a gerrymandered cluster. We use this term by analogy
with its political use: a gerrymandered electoral district is one that has been stretched
out of its natural shape—generally one with close to minimal circumference for its
area—into one that unnaturally includes areas that seem better connected to different
districts. Similarly, a gerrymandered cluster is one that unnaturally includes too many
characteristics which, in reality, have nothing to do with each other. In effect, viewing
interests as areas, such a cluster is stretched out in nonsensical ways.

Trusting other agents’ 
judgments leads to 
gerrymandered clusters

Why would this happen? Because X, in recursively enumerating the members of clus-
ter C1, would be trusting the judgment of Y about what an interest really means. As
far as Y is concerned, it is in a single cluster, C2, which happens to specify interests
which mention either cats or dogs. But this is not a view shared by either X or Z,
whose interests are more restrictive.

No global ontology

No distinguished cluster 
names

Remember that nowhere have we stated that characteristics (in the general case) nor
interests (in the case of Yenta) have distinguished names or some other attribute that
would make them unambiguously identifiable as being the same, or different, across
all agents in the system. We have provided no central authority to impose a consistent
ontology on all agents in the system. Furthermore, for all agents to reach a consensus
among themselves, we would have to provide some mechanism to permit, in the limit,
propagating such a proposal to the entire system and making it consistent. We have
provided no such mechanism. Instead, we provide only the assurance that there exists
a metric which can compare one agent’s characteristics with another and to reach a
local, not a global, decision about similarity of characteristics.

Thus, one agent should not trust another about what a characteristic for a third agent
really means, because one agent has no assurance that another shares its ontology. All
such judgments must necessarily be local—meaning that, if X is to make a determina-
tion about whether Z shares some characteristic with it, it needs to examine Z’s data
directly. It cannot trust the judgment of some intermediate agent Y. This does not
mean that X must communicate directly with Z to make this determination, however.
As long as X may be assured that it receives a faithful copy of Z’s data, no matter
where this copy comes from, X may make the comparison. But it must make the com-
parison itself.
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2.10 Using the 
resulting clusters

Once we have clustered agents based on characteristics shared by their users, what
can we do with the resulting clusters? We shall investigate some uses of these clusters
below. Applications which fit the criteria advanced in Section 2.2, but are substan-
tially different from Yenta, may have additional uses for these clusters.

The basic operations we will investigate here concern:

• Communicating from one user to a single other user

• Broadcasting to all other users in a cluster

• Hiding the origin and destination of communications

By the end of this subsection, we shall also have derived the rationale and use for the
basic components of any message transmitted—namely, a tuple consisting of the mes-
sage itself, a unique-ID, and a cluster characteristic. Many ways of presenting such
messages are possible; their real-time or close to real-time nature makes it reasonable
to use an email-like user interface, or something akin to Zephyr instances [1][36].

2.10.1 One-to-one 
communication

In the simplest scenario, one agent simply transmits a message to some other agent,
using the same sort of network connections as are used to swap characteristics.
Whether or not the two agents are in the same cluster is irrelevant—once one of the
agents has found the IP address of another, a connection may be opened. However, it
is presumed that most such communications are between agents which believe each
other to share characteristics—loosely, they are in the same cluster—because we pre-
sume that users who share characteristics have the most to say to each other.

2.10.2 Broadcasting to all 
agents in a cluster

.A more complicated scenario involves sending a message to all other agents in a
cluster. In this case:

• The broadcasting protocol should be efficient, and must terminate.

• We must handle the case of gerrymandered clusters, as described in section
Section 2.9.

EfficiencyEfficiency in the protocol means that no one agent should be required to do all the
work of communicating with all other agents in its cluster. (Indeed, as shown in
Section 2.9, it cannot even determine exactly what all the other agents in the cluster
are.) Hence, the way we implement broadcasts is to use a flooding algorithm, familiar
from the Usenet news system [83]. When an agent wants to send a message to all
other agents in its cluster, it sends it to all other known agents in its cluster cache, with
instructions that the message should be forwarded to all other agents in their cluster
caches, and so on recursively.

TerminationIf this was the entire protocol, it would fail to terminate, because the possibility exists
that there will be cycles in the digraph describing which agents are in which other
agents’ cluster caches. A message sent into this graph would circulate endlessly. To
avoid this, messages are tagged with a unique identifier (UID), and every agent com-
pares incoming broadcast messages with a cache of recently-seen UID’s. If this mes-
sage has been seen before, it is dropped immediately, and not propagated. 

The UID cache in each agent must preserve incoming UID’s long enough that there is
a low probability that the message might still be circulating by the time it is timed out
of the cache. This probability need not be zero, and cannot be: If we assume bounded
storage in any given agent, but also assume that any agent may receive a message,
crash, and then stay down an arbitrary length of time before coming back up and
attempting to send the message, then we cannot set any particular timeout that is long
enough. Instead, we must merely guarantee that the effective gain of the system—the
number of messages emitted by any given agent, on average, for a single message
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received—is low enough that messages are eventually damped out. If this is the case,
then circulating messages will eventually vanish from the system, even though any
given agent may occasionally see a duplicate message from some time far in the past.
(Applications which cannot ever tolerate a duplicate message must arrange to main-
tain UID’s forever, or must reject messages older than a certain age as part of their fil-
tering algorithm.)

Avoiding gerrymandering We now turn to the case of gerrymandered clusters. Consider the case of the three
example Yentas described above in Section 2.9. Suppose that Yenta X wishes to
broadcast to its cluster. Clearly, Y should receive such a broadcast, because the two
Yentas share an interesting in cats. However, Z has no interest in such a message, nor
would any other Yentas in C3. This means that Z must have some way to know that it
should drop the message—otherwise, messages intended for what X considers C1
(and what Y considers C2) would also propagate into C3, and presumably far into
clusters beyond as well.

To avoid this scenario, messages that are transmitted also include the characteristic
which describes the cluster, from the point of view of the original sender of the mes-
sage. It is very important that this is the original sender’s characteristic—if this were
not the case, then third-party recipients of the message (Z in our example) would
again be heeding some intermediate party’s idea of what a given cluster was about.
Given that the characteristic is transmitted along with the message, each agent in the
chain can evaluate whether the message still seems relevant to its own set of clusters.
If the message is relevant to none, then it is dropped. (Note that it is possible that X’s
original characteristic might be deemed to match more than one cluster in some
receiving agent; in that case, the message should be duplicated and broadcast into
each cluster.)

In order to aid agents receiving one-to-one (non-broadcast) messages, and to make the
protocol simpler by increasing commonality between the two cases, we also transmit
the relevant characteristic along with the message even in the one-to-one case. We can
only do this if the transmitting agent actually knows which cluster the recipient’s
agent is in; it may be the case that the user wishes to transmit a message to a particular
agent irrespective of its cluster. In this case, no characteristic will be sent.

A complete message tuple We have thus arrived at the complete set of tags that must accompany any given mes-
sage between agents. A complete message thus consists of:

• The message itself.

• The message’s UID.

• The characteristic associated with the cluster—required if a broadcast, suggested if
one-to-one.

2.10.3 Hiding identities Let us now consider the case in which it is important to hide the identify of the send-
ing or receiving agent. We shall investigate this case in more detail in Chapter 3, but
we should point out here that this capacity is important to make available. Without the
ability to hide message originators and recipients, traffic analysis may be employed to
guess information about the agents in the system.

For example, given the three-Yenta scenario in Section 2.9, suppose that we are an
eavesdropper who can monitor communications between agents, even though we may
not be able to decrypt them. If we know, though some mechanism, that Yenta X is
interested in cats, and see substantial message traffic between X and Y, we can make a
reasonable guess that Y is interested in cats as well.
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The easiest way to defuse this threat is to send any message for a given agent in a
cluster to all agents in the cluster—in other words, to broadcast it. Assuming that the
connectivity of the cluster, and the characteristics of each agent in it, are suitable, we
have an arbitrarily high probability that the target agent will receive at least one copy
of the message. Obviously, if the message is also intended to be private, it must be
encrypted using a key that only the recipient knows; we will address this more fully in
Chapter 3. All agents which receive the broadcast attempt to decrypt it, but only the
target agent possesses the correct private key; all other agents fail to decrypt the mes-
sage and simply drop it. This is the general idea behind Blacknet [118], an idea sug-
gested in the Cypherpunk community as a way to anonymously trade secrets, yet foil
traffic analysis, by broadcasting any given message to the entire world via Usenet
news, yet encrypt it only for its intended recipient(s).

This means that, in the general case, even one-to-one messages are broadcast. They
are propagated, as part of foiling traffic analysis, by all agents which deem the mes-
sage to be close enough to one of their existing clusters. Because actual message
being propagated is encrypted, it may only be read by a subset—possibly singular—
of the agents. This is clearly not as conservative of network resources as direct, point-
to-point connections, but it is far safer if widespread eavesdropping and traffic analy-
sis is considered to be a threat. If proper Mixmaster [10][23][66] dithering of the tim-
ing and size of transmissions is employed—by padding all messages to the same size,
sending garbage messages when there is nothing to send, and sending messages either
at totally random times or totally periodic times—it is possible that both sender and
receiver could be beyond suspicion, as in the definition in Section 3.2.2.

We will address further aspects of this mechanism, including its behavior against
active attackers and widespread traffic analysis, in Chapter 3.

2.11 ReputationsIt is expected that this architecture will be used for applications which handle per-
sonal data. Much of the strength of the privacy-protecting features of the architecture
(see Chapter 3) derives from the use of pseudonyms in place of real user identities.

Trolling and spoofingGiven this, how does any user know anything at all about another user of the system?
For example, in Yenta, how does a user know that the person on the other end of some
link is not his or her supervisor, romantic partner, or family member, trolling for inter-
ests that the user would rather not admit to? This is an example of the more general
problem of spoofing—some user pretending to be someone else.

In general, this is a difficult problem. We shall sketch out our overall approach to it
here, but many of the details must wait until Chapter 3 provides essential background
and algorithms.

The architecture we present attempts to solve this problem by using reputations. Users
may make any number of statements about themselves, called attestations, which are
cryptographically signed by other users via their agents. These attestations are associ-
ated with the user’s pseudonym—their Yenta-ID in Yenta, for example—and not their
real identity, which may be unknown even to the user’s own agent. It is beyond the
scope of this architectural description to specify exactly how these other users acquire
the trust to sign someone’s attestation—in many cases, such as inside an organization,
the users may be known to each other and therefore may sign each other’s attestations
on the basis of this shared knowledge. In other cases, such trust may come from long
association and interactions through the application.

The web of trustWhen two agents communicate, they may trade attestations. A user attempting to ver-
ify an attestation, whom we will call the verifier, must examine the signatures associ-
ated with the attestation, and must either convince himself that someone known to the
user is one of the signatories, or that one of the signatories themselves has been
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endorsed (via their signed attestation) by someone known to the verifier. The verifier
is therefore attempting to construct a chain of signatures which terminates at one or
more other users already known to the verifier. This tactic is exactly the same as is
used to verify the identity corresponding to PGP public keys [187], and is called a
web of trust. The details of how identities are handled, and the cryptographic algo-
rithms used to sign attestations, are deferred to Chapter 3.

Verifying attestations is a fundamentally peer-to-peer operation. There is no trusted
certifying authority, and no assumed hierarchy to the signatures being presented. How
many signatures, from whom, and the exact structure required of the signature chain
is completely up to the verifier’s discretion. The verifier’s policy may change depend-
ing on the use to which the information will be put—for example, in Yenta, a conver-
sation to some unknown other user about a noncontroversial topic may not require
any verification at all.

Word-of-mouth reputations Like the referral algorithm described in Section 2.8, this is a word-of-mouth
approach. It resembles the stereotype of small-town gossip and reputations, although
this analogy is not exact—in small towns, the gossip is usually about third parties,
whereas here the statements made are about the person who is making the statement. 

There is nothing preventing a single distinguished signer—some signer that is well-
known to a large fraction of users—from becoming established. This requires only
that all users know about this signer, and that they trust it. Such a scenario is likely in
an organization, which may have designated some individual to hold corporate cryp-
tographic keys or the like, and which can disseminate to all users, through some
mechanism not specified here, who the signer is and why the other users should trust
it. However, such a distinguished signer is outside the scope of this architectural
description; it is a local policy issue.

Any given user’s attestations are stored (and offered) by his or her own agent. This
must be so, because there is in general no distinguished location in the system to ask
about any other user’s reputation—the attestations come from the user himself.
Because the user owns his own attestations, it is likely that only positive attestations,
e.g., those that cast the user in a favorable light, will be offered. Verifiers thus walk a
fine line in their judgments about attestations: while excessively positive attestations
are unlikely to be signed by anyone trustworthy, negative attestations are unlikely to
exist at all.

Additional details about the cryptographic operation of attestations is provided in
Chapter 3. Yenta’s use of attestations is described in Chapter 4.

2.12 Running 
multiple agents on 
one host

The architecture presented here has a rather unusual problem, namely, how can multi-
ple users run the application simultaneously on the same host? At first glance, this
appears completely straightforward—isn’t it common that users on a timesharing host
can both run telnet at the same time, for example?—but there are wrinkles in this
architecture that make the straightforward solution inappropriate.

Typical client/server Applications which use IP networks to communicate identify the connection via a 4-
tuple of the local and remote host IP addresses and port numbers. In general, the host
IP address determines which computer is involved, and the port number determines
which program is involved, at each end of the link. Typical applications, such as tel-
net, depend on contacting a known port on the server end—for example, telnet uses
port 23. A daemon process that listens to that port then creates an appropriate server
which handles a client’s inbound connection.

Privileged daemons Unfortunately, this process requires that the daemon run as a privileged user under
most operating systems, since it must be able to create the server process as the
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appropriate user—otherwise, the server process could not access things that the user
himself could access. If the server process was FTP, for example, the user would be
unable to access his files unless everyone could.

Ephemerality of serversFurther, the server process that is created by this mechanism typically interacts only
with the host operating system—its files and so forth—but does not then open addi-
tional network connections. Finally, server processes tend to be ephemeral—when the
client network connection vanishes, so should the server.

We have different 
requirements

The architecture presented here is somewhat different. It is inconvenient to require
that users running Yenta, say, also arrange to have their administrator install a privi-
leged program in order to do so. Furthermore, such a privileged program would be
tempting source for attack. For example, if all traffic passed through the daemon, it is
potentially tappable at that point. And applications which use SSL to protect their
communications—as Yenta does, for example (see Section 4.8.1)—cannot tunnel
their encrypted data through the server, since the SSL architecture [63] does not per-
mit this.

The portmapperInstead, we run a port mapper service. The first copy of the application to be started
on any given host starts listening on the well-known-port—the WKP—for the applica-
tion. (In Yenta, for example, this is port 14990.) We shall call this copy of the applica-
tion the portmapper. The portmapper’s acquisition of the well-known-port prevents
any other program on the system from listening on that same port. The application
then forks; the other half of the fork then starts up as usual and runs the normal user
application.

Acquiring the well-known-
port; registering with the 
portmapper

Whenever any application starts up on the host, it attempts to acquire the WKP. If it
succeeds, it forks as above, and one half becomes the portmapper. If it fails, then it
knows that a portmapper is already running. In this case, the application scans the
available range of ports until it finds one that is unused, and acquires it; let us call this
port P. The application then registers with the portmapper—it gives the portmapper
its identity (in Yenta, its Yenta-ID—see section 3.4) and the port it acquired. The port-
mapper stores this value in an internal table.

Inbound connectionsAny inbound application attempts to connect on the well-known port. It specifies the
identity of the desired agent that it wishes to communicate with—as above, in Yenta,
this is the YID. The portmapper consults its internal table and tells the inquiring appli-
cation to reconnect on port P instead.

Handling crashesApplications try to reacquire the WKP at regular intervals. A success means that the
existing portmapper must have died; the application that reacquired the port forks and
becomes the new portmapper. Similarly, applications attempt to reregister with the
portmapper at regular intervals; this enables a newly-started portmapper to rebuild its
table.

Denial-of-serviceA portmapper which acquires the port and then refuses to serve any requests—or
which provides incorrect data for requests—is engaging in a denial-of-service attack;
as we specified in Section 2.3, this is explicitly not a part of our threat model. (Pre-
sumably, on a real timesharing host, other users of the application will list the sys-
tem’s processes, discover the true identity of the user running the malicious
portmapper, and will complain vigorously to the perpetrator.) 

Security preservedNote carefully how this approach fulfills the goals required of our architecture. The
portmapper contains no personal data—agent ID’s are public information. No per-
sonal data goes to any third-party process—the portmapper never sees the encrypted
data stream between any two applications. No privileged process is required, and
there is no single point at which security may be compromised. 
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2.13 Evaluation 
hooks

Our final topic of this chapter concerns monitoring the operation of the system. The
sample application described in Chapter 4 is a research prototype, and consequently it
is valuable to have the ability to collect information from it while it runs. Other appli-
cations might also benefit from the ability to observe their operation; such observation
can be invaluable for locating architectural or implementation bugs, for example.

In arranging such a monitoring capability, however, we must be careful not to undo
the privacy protections that the architecture tries so hard to put in place. The sketch
that follows details some of the steps involved, so as to complete our architectural
description. Details of how Yenta arranges to be monitored are presented in Chapter 4.

We assume that monitoring the running system can be accomplished by collecting
statistics, from each agent, which detail what actions that agent has taken recently,
whether or not it has detected any internal inconsistencies, and some information
about its internal databases. Exactly what this information consists of is, of course,
application-dependent.

A central receiver—a big 
problem?

In order to allow these statistics to be analyzed, they must be accumulated in a single
place—a central receiver of statistical data. This is an alarming suggestions to anyone
who has read Section 1.5: such a suggestion could potentially run afoul of all the
problem of trust expressed in that section.

The key is to arrange for anonymity of the collected data and confidentiality of its
transmission. We shall examine these in turn.

Anonymity In order for the data to be anonymous, there must not be anything in it that can be
related back to a particular user. We already assume that there is more than one user in
the system, from Section 2.2, which makes the most obvious attack—knowing that all
the data is from the system’s only user—infeasible. The particular application being
run must also take care to sanitize its data, by removing as many personally-identifi-
able details from the reported data as possible. For example, if the application handles
messages between users, and it is important to see some of the contents of these mes-
sages, the identities of the correspondents should not be transmitted. Preferably, the
messages themselves should not be reported—if what we care about is, say, the aver-
age message length, then only the length of the message should be reported in the first
place. This is analogous to the caution expressed in Section 1.5 about not collecting
anything which you are not willing to have be the subject of a subpoena.

The point of sanitizing the data is to eliminate the issue of having to trust the central
server. This means that the central server can leave the accumulated data in the clear,
on disks which might be the subject of an intrusion or subpoena, without compromis-
ing users’ privacy.

Unlinkability must be what 
we are protecting

It is very important that the sanitization process takes into account that some data is
dangerous regardless of whether it can be associated with a particular individual. For
example, data on how to build a nuclear bomb in one’s backyard, using components
from the corner hardware store, should presumably not be allowed to reside on the
central server even if it is not possible to connect it with any particular person—the
mere disclosure of the data itself, due to compromise of the server, could have disas-
trous consequences. Care is required of the application designer if data like this could
be present in the system.

Sanitizing the data is part of the solution. In many cases, however, one might wish to
analyze the behavior of particular agents over time. It must be possible to determine
unambiguously which agent is which, but it is presumably irrelevant exactly whose
agent is the one reporting a particular item. In other words, we care about distinguish-
ing agents from each other, but not in mapping them back to user identities.
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Random unique-ID’sThe solution to this problem is straightforward—have each agent assign itself a
unique identifier, not related in any way to anything else about the user (neither the
user’s identity, nor his characteristics), and report that unique identifier when sending
data to the central receiver. This identifier should not be the same as the identifier
which is a pseudonym for the user—or any other identifier at all—since the whole
point is to make statistical data collection unlinkable to actual users or their online
identities. For example, in Yenta, the ID we are discussing here is not the Yenta-ID.
This unique identifier can be simply any sufficiently-random collection of bits which
is long enough that accidental collisions (birthday paradoxes) are unlikely. For exam-
ple, in any reasonable application, 128 bits is perfectly sufficient.

If the data is sufficiently sanitized before transmission, and any identification infor-
mation is restricted to disambiguating multiple agents from each other, then the data
as collected at the central server is relatively safe. None of the threats mentioned in
Section 1.5 present an insurmountable problem, because the data cannot be related
back to anyone who could be harmed by its disclosure, and we are assuming that the
data collected is inherently safe if its source is unknown.

ConfidentialityThe remaining issue is confidentiality. It is insufficient to protect the data only once it
arrives at the server, since an eavesdropper may be present between any given agent
and the server. (Indeed, one of the best places such an eavesdropper could possibly be
is right at the server, since all application traffic destined for the server will pass that
point.) Such an eavesdropper could identify both the contents of the traffic and, for
instance, the IP address of its origin; this could lead to disclosure of the mapping
between any particular piece of data and the user who originated it.

To protect users against this threat, the data in transit to the central server must be
encrypted.

Unless the application logs at different intervals or at different lengths depending on
some confidential data, or unless the mere fact that a given user is running the applica-
tion at all is considered confidential, this is sufficient to defeat eavesdropping of the
contents of the transmission, and traffic analysis of the communication. 

Note that if merely whether or not someone is running the application is considered
confidential, we may use a modification of the broadcasting solution of Section 2.10
to help. Rather than having every agent log directly to the central server, it could ask
that its logging information be routed through n random other members of some clus-
ter(s) before final transmission. The intermediate hops need not (indeed, cannot)
decrypt the communication, and the central server (and any eavesdropper positioned
there) has no idea where the logging information truly originated. If we are using this
tactic, then the actual encrypted data should be encrypted with a public key whose
corresponding private key is known only to the central server, and not to any agent in
the system. Intermediate agents cannot then decrypt the data, and even an eavesdrop-
per at the server who possesses the server’s private key cannot, by the time the data is
received, know where it came from.

Central server is not a 
fundamental part of the 
architecture

It should again be emphasized that the rest of the architecture presented in this chapter
does not depend in any way on the existence of a central collector of statistical data.
Such a capability, while valuable for debugging or research, need not necessarily be in
any deployed application. Indeed, one can make arguments that a system which is not
the subject of research or debugging should not run such a server. It represents a
potential source of privacy violations for its users, and also represents a potentially
large source of inbound traffic for whatever network site hosts it.

Robustness vs loggingAlso, it should be pointed out that robustness issues imply that agents which wish to
log information to the central server should fail gracefully if the server is unavailable.
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They should potentially queue data for later delivery, but should not hang if the cen-
tral server is not always available, and should not maintain this queued data indefi-
nitely in any case, or their storage may grow without bound. This keeps the system as
a whole from freezing if the central server is temporarily or permanently taken offline,
and keeps storage on local agents from growing monotonically as well.

2.14 Summary In this chapter, we have examined the basic elements of the architecture. We have dis-
cussed what traits are shared by applications for which the architecture was designed,
and which problems we do not address. We have briefly described the sample applica-
tion which has been implemented to test the architecture, and extensively described
those elements of the architecture which support it, including how agents may cluster,
how the resulting groups may be used, the reputation system, and how evaluation data
may be safely collected.


