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Abstract

 

Technology does not exist in a social vacuum. The design and patterns of use of any par-
ticular technological artifact have implications both for the direct users of the technology,
and for society at large. Decisions made by technology designers and implementors thus
have political implications that are often ignored. If these implications are not made a part
of the design process, the resulting effects on society can be quite undesirable.

The research advanced here therefore begins with a political decision: It is almost always a
greater social good to protect personal information against unauthorized disclosure than it
is to allow such disclosure. This decision is expressly in conflict with those of many busi-
nesses and government entities. Starting from this premise, a multi-agent architecture was
designed that uses both strong cryptography and decentralization to enable a broad class
of Internet-based software applications to handle personal information in a way that is
highly resistant to disclosure. Further, the design is robust in ways that can enable users to
trust it more easily: They can trust it to keep private information private, and they can trust
that no single entity can take the system away from them. Thus, by starting with the
explicit political goal of encouraging well-placed user trust, the research described here
not only makes its social choices clear, it also demonstrates certain technical advantages
over more traditional approaches.

We discuss the political and technical background of this research, and explain what sorts
of applications are enabled by the multi-agent architecture proposed. We then describe a
representative example of this architecture---the Yenta matchmaking system. Yenta uses
the coordinated interaction of large numbers of agents to form coalitions of users across
the Internet who share common interests, and then enables both one-to-one and group con-
versations among them. It does so with a high degree of privacy, security, and robustness,
without requiring its users to place unwarranted trust in any single point in the system.
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CHAPTER 1

 

Introduction

 

1.1 The 
fundamental 
premise

 

Technology does not exist in a social vacuum. The design and patterns of use of any
particular technological artifact have implications both for the direct users of the tech-
nology, and for society at large. Decisions made by technology designers and imple-
mentors thus have political implications that are often ignored. If these implications
are not made a part of the design process, the resulting effects on society can be quite
undesirable.

The research advanced here therefore begins with a political decision: It is almost
always a greater social good to protect personal information against unauthorized dis-
closure than it is to allow such disclosure. This decision is expressly in conflict with
those of many businesses and government entities. Starting from this premise, a
multi-agent architecture was designed that uses both strong cryptography and decen-
tralization to enable a broad class of Internet-based software applications to handle
personal information in a way that is highly resistant to disclosure. Further, the design
is robust in ways that can enable users to trust it more easily: They can trust it to keep
private information private, and they can trust that no single entity can take the system
away from them. Thus, by starting with the explicit political goal of encouraging
well-placed user trust, the research described here not only makes its social choices
clear, it also demonstrates certain technical advantages over more traditional
approaches.

We discuss the political and technical background of this research, and explain what
sorts of applications are enabled by the multi-agent architecture proposed. We then
describe a representative example of this architecture---the Yenta matchmaking sys-
tem. Yenta uses the coordinated interaction of large numbers of agents to form coali-
tions of users across the Internet who share common interests, and then enables both
one-to-one and group conversations among them. It does so with a high degree of pri-
vacy, security, and robustness, without requiring its users to place unwarranted trust in
any single point in the system.

The research advanced here attempts to break a false dichotomy, in which systems
designers force their users to sacrifice some part of a fundamental right—their pri-
vacy—in order to gain some utility—the use of the application. We demonstrate that,
for a broad class of applications, which we carefully describe, this dichotomy is
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indeed 

 

false

 

—that there is no reason for users to have to make such a decision, and no
reason for systems designers to force it upon them.

If systems architects understand that there is not necessarily a dichotomy between pri-
vacy and functionality, then they will no longer state a

 

 policy

 

 decision—whether to
ask users to give up a right—as a 

 

technical

 

 decision—one required by the nature of
the technology. Casting decisions of corporate or government policy as technical
decisions has confused public debate about a number of technologies. This work
attempts to undo some of this confusion.

The research presented here is thus intended to serve as an exemplar. The techniques
presented here, and the sample application which demonstrates them, are intended to
serve as examples for other systems architects who design systems that must manipu-
late large quantities of personal information.

 

1.2 What’s ahead?

 

In this chapter, we shall:

Section 1.3 • Describe which type of privacy we are most interested in protecting

Section 1.4 • Discuss the concept of privacy as a right, not a privilege

Section 1.5 • Show some of the technical, social, and political problems with centralized manip-
ulation of personal information

Section 1.6 • Show some of the advantages of a decentralized solution

Section 1.7 • Discuss the components of the work presented here, specifically its 

 

architecture

 

,
the 

 

sample application

 

 of that architecture, the 

 

implementation

 

 of that application,
and issues of 

 

deployment and evaluation

 

Section 1.7 • Briefly summarize the remaining chapters of this dissertation

Later chapters will:

Chapter 2 • Discuss the system architecture for the general case

Chapter 3 • Analyze user privacy and system security

Chapter 4 • Detail the sample application—the matchmaking system Yenta

Chapter 5 • Discuss the evaluation of the architecture and of Yenta

Chapter 6 • Examine some related work

Chapter 7 • Draw some general conclusions

 

1.3 What are we 
protecting?

 

Privacy

 

 means different things to different people, and can be invoked in many con-
texts. We define privacy here as 

 

the protection of identifiable, personal information
about a particular person from disclosure to third parties who are not the intended
recipients of this information.

 

 This sentence deserves explanation, and we shall
explain it below. We shall also touch upon some related concepts, such as 

 

trust

 

 and

 

anonymity, 

 

which are required in this explanation.

 

Protection

 

Protecting a piece of information means keeping it from being transmitted to certain
parties. Which parties are not supposed to have the information is dependent upon the
wishes of the information’s owner. This process is transitive—if party A willingly
transmits some information about itself to party B, but party B then transmits this
information to some party C, which A did not wish to know it, then the information
has not been protected. Such issues of transitivity thus lead to issues of 

 

trust

 

 (see
below) and issues of 

 

assignment of blame

 

—whether the fault is in A (who 

 

trusted

 

 B
not to disclose the information, and had this trust violated) or in B (who 

 

disclosed the
information without authorization

 

 to C), or in both, depends on our goal in asking the
question.
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Identifiability

Unlinkability

 

In many cases, 

 

disclosure

 

 of information is acceptable if the information cannot be
traced to the individual about whom the information refers—we refer to this as

 

unlinkability. 

 

This is obvious in, for example, the United States Census, which, ide-
ally, asks a number of questions about every citizen in the country. These answers to
these questions are often considered by those who answer them to be private informa-
tion, but they are willing to answer them for two reasons: The collection of the infor-
mation is deemed to have 

 

utility

 

 for the country as a whole, and the collectors of the
information make assurances that the information will not be 

 

identifiable

 

, meaning
that it will not be possible to know which individual answered any given question in
any particular way—the respondents are 

 

anonymous

 

. Because the Census data is
gathered in a 

 

centralized

 

 fashion, it leads to a 

 

concentration of value

 

 which makes
trust an important issue: central concentrations of data are more subject to institu-
tional abuse, and make more tempting targets for outsiders to compromise.

 

Particular person

 

Whether or not the information is about a 

 

particular

 

 person—someone how is identi-
fiable and is linkable to the information—or is instead about an aggregate can make a
large difference in its sensitivity to disclosure. Aggregate information is usually con-
sidered less sensitive—although cross-correlation between separate databases which
talk about the same individuals can often be extremely effective at revealing individu-
als again in the data, and represent a serious threat to systems which depend for their
security solely on aggregation of data [169].

 

Personal information

 

When we use the term 

 

personal information

 

, we mean information that is known 

 

by

 

some particular individual 

 

about

 

 himself, 

 

or

 

 which is known to some set of parties
who that individual considers to be authorized to know it. If no one else knows this
information yet, the individual is said to 

 

control

 

 this information, since its disclosure
to anyone else is presumably, at this moment, completely up to the individual himself.
We are 

 

not

 

 referring to the situation whereby party A knows something about party B
that B does not know about himself. Such situations might arise, for example, in the
context of medical data which is known to a physician but has not yet (or, perhaps is
not ever) revealed to the patent. In this case, B cannot possibly protect this informa-
tion from disclosure, for two reasons: B does not have it, and because the information
is known by someone who may or may not be under A’s control.

 

Disclosure

 

If personal information about someone is not 

 

disclosed,

 

 then it is known only to the
originator of that information. In this case, the information is still private. One of the
central problems addressed by this dissertation is how to 

 

disclose

 

 certain information
so that it may be used in an application, while still giving the subject control over it.

 

Third parties

 

Many existing applications which handle personal information do so by surrendering
it, in one way or another, to a third party. This work attempts to demonstrate that this
is not always required. In many instances, there is no 

 

need to know

 

—knowledge of
this information by the third party will not benefit the person whom this information
is about. We usually use the term 

 

third party

 

 to mean some other entity which does
not have a compelling need to know.

 

Intended recipients

 

The 

 

intended recipient

 

 of some information is the party which the subject desires to
have some piece of personal information. If the set of intended recipients is empty,
then the information is 

 

totally private

 

, and, barring involuntary disclosures such as
search and seizure, the information will stay private. The work presented here con-
cerns cases where, for whatever reason, the set of intended recipients is nonempty.

 

Trust

 

Whenever private information is surrendered to an intended recipient, the subject

 

trusts

 

 the recipient, to one degree or another, not to disclose this information to third
parties. (If the subject has no trust in the recipient at all, but discloses anyway, either
the subject is acting against his own best interests, or the information was not actually
private to begin with—in other words, if the information is 

 

public

 

 and it does not mat-
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ter who knows it, then there is no issue of trust.) Trust can be misplaced. A robust
solution in any system, social or technological, that handles private information gen-
erally specifies that trust be extended to as few entities, in as minimal a way as possi-
ble to each one. This minimizes the probability of disclosure and the degree of
damage that can be done by disclosure due to a violation of the trust extended by the
subject.

 

Anonymity and
pseudonymity

 

In discussing 

 

unlinkability of information

 

, such as that expected by respondents to the
US Census, we mentioned that the respondents trust that they are 

 

anonymous

 

. To be
fully anonymous is to know that information about oneself cannot be associated with
one’s physical extension—the actual individual’s body—or with any other anony-
mous individual—all anonymous individuals, to a first approximation, might as well
be the same person. This also means that the individual’s real-world personal reputa-
tion, and any identities in the virtual world (such as electronic mail identification), are
similarly dissociated from the information. Full anonymity is not always possible, or
desired, in all applications—for example, most participants in a MUD are pseudony-
mous [20][33][49][59][60][116]. This means that they possess one or more identities,
which may be distinguished from other identities in the MUD (hence are not fully
anonymous), but which may not be associated with the individual’s true physical
extension. The remailer operated at penet.fi.net [77], for example, also used pseud-
onyms. There are even works of fiction whose primary focus is the mapping between
pseudonyms and so-called 

 

true names

 

 in a virtual environment [176].

 

Reputations

 

The reason why the distinction between anonymity, pseudonymity, and true names
matters has to do with 

 

reputations.

 

 In a loose sense, one’s reputation is some collec-
tion of personally-identifiable information that is associated, across long timespans,
with one’s identity, and is known to a possibly-large number of others. In the absence
of any sort of pseudonymous or anonymous identities, such reputations are directly
associated with one’s physical extension. This provides some degree of 

 

accountability
for one’s behavior

 

, and can be either an advantage or a disadvantage, depending on
that behavior—those with good reputations in their community are generally afforded
greater access to resources, be they social or physical capital, than those with poor
reputations. Pseudonymous and anonymous identities provide a degree of decoupling
between the actions of their owners and the public identity. Such decoupling can be
invaluable in cases where one wishes to take an action that might land the physical
extension in trouble. This decoupling has a cost: because a pseudonym, and, particu-
larly, an anonym, is easier to throw away than one’s real name or one’s body, they are
often afforded a lower degree of trust by others.

 

A legal definition

 

Another way to look at the question of what we are protecting is to examine legal def-
initions. For a US-centric perspective, consider this definition from Black’s Law Dic-
tionary [14]:

Privacy, Right of:

The right to be let alone; the right of a person to be free from unwanted pub-
licity; and right to live without unwarranted interference by the public in
matters with which the public is not necessarily concerned. Term “right of
privacy” is generic term encompassing various rights recognized to be inher-
ent in concept of ordered liberty, and such right prevents governmental inter-
ference in intimate personal relationships or activities, freedoms of
individual to make fundamental choices involving himself, his family, and
his relationship with others. 

 

Industrial Foundation of the South v. Texas
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Indus. Acc. Bd., Tex., 

 

540 S.W.2d 668, 679. The right of an individual (or
corporation) to withhold himself and his property from public scrutiny, if he
so chooses.

It is said to exist only so far as its assertion is consistent with law or public
policy and in a proper case equity will interfere, if there is no remedy at law,
to prevent an injury threatened by the invasion of, or infringement upon, this
right from motives of curiosity, gain, or malice. 

 

Federal Trade Commission
v. American Tobacco Co., 

 

264 U.S. 298, 44 S.Ct. 336, 68 L.Ed. 696. While
there is no right of privacy found in any specific guarantees of the Constitu-
tion, the Supreme Court has recognized that zones of privacy may be created
by more specific constitutional guarantees and thereby impose limits on gov-
ernmental power. 

 

Paul v. Davis

 

 424 U.S. 693, 712, 96 S.Ct. 1155, 1166, 47
L.Ed.2d 405; 

 

Whalen v. Roe

 

, 429 U.S. 589, 97 S.Ct. 869, 51 L.Ed.2d 64. See
also Warren and Brandeis, 

 

The Right to Privacy

 

, 4 Harv.L.Rev. 193.

Tort actions for invasion of privacy fall into four general classes: 

 

Appropria-
tion

 

, consisting of appropriation, for the defendant’s benefit or advantage, of
the plaintiff’s name or likeness. 

 

Carlisle v. Fawcett Publications

 

, 201 Cal.
App2d 733, 20 Cal. Rptr 405. 

 

Intrusion 

 

[ . . . ] 

 

Public disclosure

 

 of private
facts, consisting of a cause of action in publicity, of a highly objectionable
kind, given to private information about the plaintiff, even though it is true
and no action would lie for defamation. 

 

Melvin v. Reid

 

 112 Cal. App. 285,
297 P. 91. [ . . . ] 

 

False light in the public eye

 

 [ . . . ]

 

1.4 The right to 
privacy

 

Why is personal privacy worth protecting? Is it a right, which cannot be taken away,
or a privilege, to be granted or rescinded based on governmental authority?

 

Constitutional arguments

 

In the United States, there is substantial legal basis that personal privacy is considered
a right, not a privilege. Consider the Fourth Amendment to the US Constitution,
which reads:

The right of the people to be secure in their persons, houses, papers, and
effects, against unreasonable searches and seizures, shall not be violated, and
no Warrants shall issue, but upon probable cause, supported by Oath or affir-
mation, and particularly describing the place to be searched, and the persons
or things to be seized.

While this passage is the most obvious such instance in the Bill of Rights, it does not
explicitly proclaim that privacy itself is a right.

There are ample other examples from Constitutional law, however, which have
extended the rights granted implicitly by passages such as the Fourth Amendment
above. Supreme Court Justice Brandeis, for example, writing in the 1890’s and later,
virtually created the concept of a Constitutional right to privacy [180]. For example,
consider this quote, from 

 

Olmstead v. United States

 

 [130], writing about the then-new
technology of telephone wiretapping:

The evil incident to invasion of the privacy of the telephone is far greater
than that involved in tampering with the mails. Whenever a telephone line is
tapped, the privacy of the persons at both ends of the line is invaded, and all
conversations between them upon any subject, and although proper, confi-
dential, and privileged, may be overheard. Moreover, the tapping of one
man’s telephone line involves the tapping of the telephone of every other
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person whom he may call, or who may call him. As a means of espionage,
writs of assistance and general warrants are but puny instruments of tyranny
and oppression when compared with wire tapping.

Later examples supporting this view include 

 

Griswald v. Connecticut

 

 [71], in which
the Supreme Court struck down a Connecticut statue making it a crime to use or coun-
sel anyone in the use of contraceptives; and 

 

Roe v. Wade

 

 [147], which specified that
there is a Constitutionally-guaranteed right to a personal sphere of privacy, which may
not be breached by government intervention.

 

Moral and functional 
arguments

 

But the laws of the United States are not the only basis upon which one may justify a
right to privacy—for one thing, they are only valid in regions in which the United
States government is sovereign. It is the author’s contention that there is a 

 

moral 

 

right
to privacy, even in the absence of law to that effect, and furthermore that, even in the
absence of such a right, it is a 

 

social good

 

 that personal privacy exists and is pro-
tected—in other words, that personal privacy has a 

 

functional benefit

 

. In other words,
even if one were to state that there is no legal or moral reason to be supportive of per-
sonal privacy, society functions in a more productive manner if its members are
assured that personal privacy can exist. For example, there are spheres of privacy sur-
rounding doctor/patient and attorney/client information which are viewed as so
important that they are codified into the legal system of many countries. Without such
assurances of confidentiality, certain information might not be exchanged, which
would lead to an impairment of the utility of the consultation. 

One might also argue that the 

 

fear of surveillanc

 

e is itself destructive, and that privacy
is a requirement for many sorts of social relations. For example, consider Fried [64]:

Privacy is not just one possible means among others to insure some other
value, but . . . it is necessarily related to ends and relations of the most funda-
mental sort: respect, love, friendship and trust. Privacy is not merely a good
technique for furthering these fundamental relations; rather without privacy
they are simply inconceivable.

For the purposes of this work, we shall take such moral and social-good assertions as

 

axioms

 

, e.g., not requiring further justification.

 

Implications for systems 
architects

 

Those who design systems which handle personal information therefore have a spe-
cial duty: They must not design systems which unnecessarily require, induce, per-
suade, or coerce individuals into giving up personal privacy in order to avail
themselves of the benefits of the system being designed. In other words, system archi-
tects have a moral, ethical, and perhaps even—in certain European countries, which
have stronger data privacy laws than the US—legal obligations to design such sys-
tems from a standpoint that is protective of individual privacy when it is possible to do
so.

There may be strong motives not to design systems in such a fashion that they are pro-
tective of personal privacy. We shall investigate some of the motives, with examples,
in the next section, but overall themes include:

See Section 1.5. • It is often conceptually far simpler to design a system which centralizes informa-
tion, yet such systems are often easily compromiseable, either through accident,
malice, or subpoena.

• The architects of many systems often have an incentive to violate users’ privacy,
often on a large scale. The business models of many commercial entities, especially
in the United States, depend on the collection of personal information in order to
obtain marketing or demographic data, and many entities, such as credit bureaus,
exist solely to disseminate this information to third parties. The European Union
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has data-protection laws forbidding this [47].

• Government intervention may dictate that users’ privacy be compromised on a
large scale. CALEA [21] is a single, well-known example; it requires that US tele-
phone switch manufacturers make their switches so-called tap-ready.

Hiding policy decisions 
under a veil of techno-
logical necessity

An example from the 
Intelligent Transportation 
System infrastructure

In many instances, the underlying motives which lead to a system design that is likely
to compromise users’ privacy are hidden from view. Instead of being clearly articu-
lated as decisions of policy, they are presented as requirements of the particular tech-
nological implementation of the system. For example, consider most Intelligent
Transportation Systems [18], such as automated tollbooths which collect fees for use
of roads. These systems mount a transponder in the car, and a similar unit in the toll-
booth. It is possible, using essentially the same hardware on both the cars and in the
tollbooths, to either have a cash-based system or a credit-based system. A cash-based
system works like Metrocards in many subways—users fill up the card with cash (in
this case, cryptographically-based electronic cash in the memory of the car’s tran-
sponder), and tollbooths instruct the card to debit itself, possibly using a crypto-
graphic protocol to ensure that neither the tollbooth nor the car can easily cheat. A
transaction-based system, on the other hand, assigns a unique identifier to each car,
linked to a driver’s name and address, and the car’s transponder then sends this ID to
the tollbooth. Bills are sent to the user’s home at the end of the month.

Cash vs creditIn other words, a cash-based system works like real, physical cash, and can be easily
anonymous—users simply go somewhere to fill up their transponders, and do not
need to identify themselves if they hand over physical cash as their part of the transac-
tion. Even if they use a telephone link and a credit card to refill their transponders at
home, a particular user is not necessarily linked to a particular transponder if the
cryptography is done right. And even if there is such a linkage between users and tran-
sponders, there is no need for the system as a whole to know where any particular
transponder has been—once the tollbooth decides to clear the car, there is no reason
for any part of the system to remember that fact. On the other hand, a credit-based
system works like a credit card—each tollbooth must report back to some central
authority that a particular transponder went through it, and it is extremely likely that
which tollbooth made this report will be recorded as well.

Same hardware either 
way; cash is actually 
simpler

Both cash- and credit-based systems can use the same hardware at both the car and
the tollbooth; the difference is simply one of software. In fact, the cash-based system
is simpler, because each tollbooth need not communicate in real-time with a central
database somewhere. (Tollbooths in either system must have a way of either detaining
cars with empty or missing transponders, or logging license plates for later enforce-
ment, but the latter need not require a real-time connection for the tollbooth to func-
tion.) Furthermore, a cash-based system obviates the need for printing and mailing
bills, processing collections, and so forth.

ITS RFP’s implicitly 
assume that drivers should 
be tracked

Yet it is almost invariably the case that requests for proposals, issued when such sys-
tems are in the preliminary planning stages, simply assume a credit-based system, and
often disallow proposals which can enable a cash-based system. This means that such
systems, from the very beginning, are implicitly designed to enable tracking the
movements of all drivers who use them, since, after all, each tollbooth must remember
this information for billing purposes. Furthermore, drivers are likely to demand item-
ized bills, so they can verify the accuracy of the data. (After all, it is no longer the case
that they need worry only about the contents of their local transponder—they must
worry about the central database, too.) Yet such a system can easily be used, either by
someone with access to the bill mailed to an individual, or via subpoena or compro-
mise at the central database, to stalk someone or to misuse knowledge about where
the individual has been, and when. Large-scale data mining of such systems can
infringe on people’s freedom of assembly, by making particular driving patterns
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inherently suspicious—imagine the case whereby anyone taking an uncommon exit
on a particular day and time is implicitly assumed to have been going to the nearby
political rally. And even the lack of a record of a particular transit has already been
used in court proceedings [18].

ITS RFP’s are setting 
policy, not responding to 
technological necessity

The aim of the work presented in this dissertation is the demonstration that many, if
not most, of these systems can be technically realized in forms that are as protective
of users’ individual privacy as one might wish. Therefore, designers of systems who
fail to ensure their users’ privacy are making a policy decision, not a technical one:
they have decided that their users are not entitled to as much personal privacy as is
possible to provide, and are implementing this decision by virtue of the architecture
of the system.

Unnecessary polarization 
of the terms of the debate

While it is the author’s contention that most such decisions are, at best, misguided,
and at worst unethical, the fact that they are often disguised as purely technical issues
polarizes the debate unnecessarily and is not a social good. If some system, whose
capabilities would improve the lives of its users, is falsely presented as necessarily
requiring them to give up some part of a fundamental right in order to be used, then
debate about whether or not to implement or use the system is likewise directed into a
false dichotomy. By allowing debate to be thus polarized, and by requiring users to
trade off capabilities against rights, it is the author’s contention that the designers and
implementors of such a system are engaging in unethical behavior.

Legitimate reasons against 
absolute personal privacy

There may be many legitimate reasons why absolute privacy a system’s users is unde-
sirable. It is not the aim of this work to assert that there are no circumstances under
which personal privacy may be violated; indeed, the moral and legal framework of the
vast majority of countries presupposes that there must be a balancing between the
interests of the individual in complete personal privacy, and those of the state or sov-
ereign state in revealing certain information about an individual to third parties.

This work aims to 
decouple technical 
necessity from decisions 
of policy

However, we should be clear about the nature of this balancing. It should be dictated
by a decision-making process which is one of policy. In other words, what is the
desired outcome? It should not instead be falsely driven by assertions about what the
technology forces us to do. The aim of this research is to decouple these two issues,
for a broad class of potential applications, and to demonstrate by example that techno-
logical issues need not force our hand when it comes to policy issues. Such a demon-
stration by example, it is hoped, will also make clearer the ethical implications of
designing a system which is insufficiently protective of the personal privacy of its
users.

1.5 The problems 
with centralized 
solutions

It is often the case that applications which must handle information from many
sources choose a centralized system architecture to accomplish the computation.
Using a single, central accumulation point for information can have a number of
advantages for the developer:

Why centralized solutions 
are handy

• It is easy to know where the information is

• Many algorithms are easy to express when one may trivially map over all the data
in a single operation

• There is no problem of coordination of resources—all clients simply know where
the central server is, and go there

Unfortunately, such a centralized organization has two important limitations, namely
reliability and trust. Reliability is an issue in almost any system, regardless of the kind
of information it handles, whereas trust is more of a serious concern in systems which
must handle confidential information.
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ReliabilityA single, central point also implies a single point of failure. If the central point goes
down, so does the entire system. Further, central points can suffer overload, which
means that all clients experience slowdown at best, or failure at worst. And in systems
where, for example, answering any query involves mapping over all or most of the
database in a linear fashion, increasing the number of clients tends to cause load on
the server to grow as O(n2).

Because of issues like this, actual large systems, be they software, business models, or
political organizations, are often divided into a hierarchical arrangement, where sub-
stantial processing is done at nodes far from any center—if there even is a center to
the entire system. For example, while typical banks are highly centralized, single enti-
ties—there is one master database of the value of each account-holder’s assets—there
is not a single central bank for the entire world. Similarly, the Internet gets a great
deal of its robustness from its lack of centralization—for example, there is not a sin-
gle, central packet router somewhere that routes all packets in the entire network.

TrustOf greater importance for this work, however, is the issue of trust. We use the defini-
tion of trust advanced in Section 1.3, namely, trust that private information will not be
disclosed.

It is here that centralized systems are at their most vulnerable. By definition, they
require that the subject of the information surrender it to an entity not under the sub-
ject’s direct control. The recipient of this information often makes a promise not to
disclose this information to unauthorized parties, but this promise is rarely completely
trustworthy. A simple taxonomy of ways in which the subject’s trust in the recipient
might be misplaced includes:

How might trust be 
violated?

• Deception by the recipient. It is often the case that the recipient of the information
is simply dishonest about the uses to which the information will be put.

• Mission creep. Information is often collected for one purpose, but then used later
for another, unforeseen purpose. In many instances, there is no notification to the
original subjects that such repurposing has taken place, nor methods for the sub-
jects to refuse such repurposing. For example, the US Postal Service sells address
information to direct marketers and other junk-mailers—it gets this information
when people file change-of-address forms, and it neither mentions this on the form,
nor provides any mechanism for users to opt out. Often, the organization itself fails
to realize the extent of such creep, since it may take place slowly, or only in com-
bination with other, seemingly-separate data-collection efforts that do not lead to
creep except when combined. Indeed, the US Federal Privacy Act of 1974 [175]
recognizes that such mission creep can and does take place, and explicitly forbids
the US government from using information collected for one purpose from being
used for a different purpose—how the USPO is allowed to sell change-of-address
orders to advertisers is thus an interesting question. Note, of course, that this Act
only forbids the government from doing this—private corporations and individuals
are not so enjoined.

• Accidental disclosure. Accidents happen all the time. Paper that should have been
shredded is thrown away unshredded, where it is then extracted from the trash and
read. Laptops are sold at auction with private information still on their disks. Com-
puters get stolen. In one famous case in March 1998, it was revealed that GTE had
inadvertently disclosed at least 50,000 unlisted telephone numbers in the southern
California area—an area in which half of all subscribers pay to have unlisted num-
bers. The disclosure occurred in over 9000 phonebooks leased to telemarketing
firms, and GTE then attempted to conceal the mistake from its customers while it
attempted to retrieve the books. The California Public Utilities Commission had the
authority to fine GTE $20,000 per name disclosed, an enormous, $1B penalty that
was not actually imposed [9]. In March of 1999, AT&T accidentally disclosed 1800
email addresses to each other as part of an unsolicited electronic commercial mail-
ing; Nissan did likewise with 24,000 [26].
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• Disclosure by malicious intent. Information can be stolen from those authorized to
have it by those intent on disseminating it elsewhere. Examples from popular me-
dia reports include, for example, IRS employees poking through the files of famous
people, and occasionally making the information public outside of the IRS [173].
Crackers, who break into others’ computer systems, may also reveal information
that the recipient tried to keep private. There is often significant commercial value
in the deliberate disclosure of other companies’ data; industrial espionage and re-
lated activities can involve determined, well-funded, skilled adversaries whose in-
tent is to compromise corporate secrets—perhaps to do some stock manipulation
or trading based on this—or to reveal information about executives which may be
deemed damaging enough to be used for blackmail or to force a resignation. Intel-
ligence agencies may extract information in a variety of means, and entities which
fail to exercise due diligence in strongly encrypting information—or which are pre-
vented from using strong-enough encryption by rule of law—may have informa-
tion disclosed while it is being transmitted or stored.

• Subpoenas. Even though an entity may take extravagant care to protect information
in its possession, it may still be legally required to surrender this information via a
subpoena. For example, Federal Express receives several hundred subpoenas a day
for its shipping records [178]—an unfortunate situation which is not generally ad-
vertised to their customers. This leads to a very powerful general principle: If you
don’t want to be subpoenaed for something, don’t collect it in the first place. Many
corporations have growing concerns about the archiving of electronic mail, for ex-
ample, and are increasingly adopting policies dictating its deletion after a certain
interval. The Microsoft antitrust action conducted by the US Department of Justice,
for example, entered a great many electronic mail messages into evidence in late
1998, and these are serving as excellent examples of when too much institutional
memory can be a danger to the institution.

This is hardly a complete list, and many more citations could be provided to demon-
strate that these sorts of things happen all the time. The point here is not a complete
itemization of all possible privacy violations—such a list would be immense, and far
beyond the scope of this work—but simply to demonstrate that the issue of trusting
third parties with private information can be fraught with peril.

Is this software, or a 
business model?

Note that the discussion above is not limited to software systems. Replace algorithm
with business practice, client with customer, and central server with vendor, and you
have the system architecture of most customer/vendor arrangements. However, we
shall not further investigate these structural similarities, except to point out that busi-
ness models themselves often have a profound impact on the architecture of an appli-
cation.

1.6 Advantages of a 
decentralized 
solution

Decentralized solutions can assist with both reliability and trust. Let us briefly exam-
ine reliability, and consider a system which does not contain a single, central, physical
point whose destruction results in the destruction of the system. By definition, there-
fore, a single, physical point of failure cannot destroy this system. This says nothing
about the system’s ability to survive either multiple points of failure, nor its ability to
survive a single architectural failure (which may have been replicated into every part
of the resulting system), but it does tend to imply that particular, common failure
modes of single physical objects—theft, fire, breakdown, accidents—are much less
likely to lead to failure of the system as a whole. This is nothing new; it is simply
good engineering common sense.

The issue of trust takes more examination. If we can build a system in which personal
data is distributed, and in which, therefore, no single point in the system possesses all
of the personal data being handled, then we limit the amount of damage—disclo-
sure—that can be accomplished by any single entity, which presumably cannot con-
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trol all elements of the system simultaneously. Systems which are physically
distributed, for example, multiply the work factor required to accomplish a physical
compromise of their security by the number of distinct locations involved. Similarly,
systems which distribute their data across multiple administrative boundaries multiply
the work factor required by an adversary to compromise all of the data stored. In the
extreme case, for example, a system which distributes data across multiple sovereigns
(e.g., governments) can help ensure that no single subpoena, no matter how broad,
can compromise all data—instead, multiple governments must collude to gain lawful
access to the data. 

Cypherpunk remailer 
chains

Cypherpunks remailer chains [10][23][66] are example of using multiple sovereigns.
A remailer chain operates by encrypting a message to its final recipient, but then
handing it off to a series of intermediate nodes, ideally requiring transmission across
multiple country boundaries. In one common implementation, each hop’s address is
only decodeable by the hop immediately before it, so it is not possible to determine,
either before or after the fact, the chain of hops that the message went through. Prop-
erly implemented, no single government could thereby compromise the privacy of
even a single message in the system, because not all hops would be within the zone of
authority of any single government.

Costs of a decentralized 
solution

Of course, as applied to the applications we examine in this dissertation, the advan-
tages of a decentralized solution do not come for free. They require pushing intelli-
gence to the leaves—in other words, that the users whose information we are trying to
protect have access to their own computers, under their own control. Decentralized
systems are also somewhat more technically complicated than centralized solutions,
particularly when it comes to coordination of multiple entities—for example, how are
the entities supposed to find each other in the first place? And such solutions may not
work for all applications formerly handled by centralized solutions, but only for those
that share particular characteristics. We will investigate each of these issues in later
chapters.

1.7 A brief summary 
of this research

The purpose of the work in this dissertation is to demonstrate that, for a class of simi-
lar applications, useful work that requires knowledge of others’ private information
may nevertheless be accomplished without requiring any trust in a central point, and
without requiring very much trust in any single point of the system. In short, such a
system is robust against violations of trust, unlike most centralized systems.

The work is therefore divided into several aspects, which will be discussed more fully
in the chapters that follow, and which are summarized in this section:

Chapter 2
Chapter 3

• An architecture which specifies the general class of applications for which we are
proposing a solution—what characteristics are common to those applications
which we claim to assist? This architecture also includes our threat model—what
types of attacks against user privacy we expect, which of those attacks we propose
to address, and how we will address them.

Chapter 4• A sample implementation of this architecture—the matchmaking system Yenta.

Chapter 5• Evaluation of the sample application as deployed, an analysis of the risks that re-
main in the design and implementation, and some speculations on how certain oth-
er applications could be implemented using the architecture we describe.

Chapter 6• An examination of related work, both with regard to privacy protection via archi-
tecture, and the sample application’s domain of matchmaking.
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1.7.1 The architecture 
and its sample application

We present a general architecture for a broad class of applications. The architecture is
designed to avoid centralizing information in any particular place, while allowing
multiple agents to collaborate using information that each of them possesses. This
collaboration is designed to form groups of agents whose users all share some set of
characteristics. The architecture we describe is particularly useful for protecting per-
sonal information from unauthorized disclosure, but it also has advantages in terms of
robustness and avoidance of single points of physical failure. In the description below,
the architecture and the sample application described in this dissertation—Yenta—are
described together.

Such an architecture assumes several traits shared by applications which make use of
it, of which the most important are the existence of a peer application for each user
who wishes to participate, running on the user’s own workstation; the availability of a
network; the availability of good cryptography; and a similarity metric which can be
used to compare some characteristic of users to each other and which enables a partial
ordering of similarity. The architecture derives much of its strength from its com-
pletely decentralized nature—no part of it need reside on a central server. Users are
pseudonymous by default, and agents are assumed to be long-lasting, with permanent
state that survives crashes and shutdowns. Individual agents participate in a hill-
climbing, word-of-mouth exchange, in which they exchange messages between pairs
of themselves—with no central server participating in such exchanges. Agents which
find themselves to be closely matched form clusters of similar other agents. An agent
which is not well-matched to a peer can ask the peer for a referral to some other agent
which is a better match, hence using word-of-mouth, based on the above partial order-
ing of similarities, to aid in the search for a compatible group of other agents.

Once clusters have been formed, agents may send messages into the clusters, commu-
nicating either one-to-one or one-to-many. Yenta uses this capability to enable users to
have both private and public conversations with each other. Particularly close matches
can cause one of the participating agents to suggest that the two users be introduced,
even if the users have not previously exchanged messages—this helps those who
never send public messages to participate.

We carefully discuss the threat model facing the architecture and the sample applica-
tion, discussing which attacks are expected and the measures taken to defend against
them. We also discuss what sorts of attacks are considered outside the scope of this
research and for which we offer no solution. Strong cryptography is used in many
places in the design, both to enable confidentiality and authenticity of communica-
tions, and as the infrastructure for a system designed to enable persistent personal rep-
utations. Because public evaluation can make systems significantly more robust and
more secure, a separate system, named Yvette, was created to make it easier for multi-
ple programmers to publicly evaluate Yenta’s implementation; Yvette is not special-
ized to Yenta and may be used to evaluate any system whose source code is public.

1.7.2 Evaluation The architecture and the sample application have been evaluated in several ways,
including via simulation and via a pilot deployment to real users. The qualitative and
quantitative results obtained demonstrate that the system performs well and meets its
design goals. In addition, several other applications which might make use of the
underlying architecture are possible and speculations on how they might be imple-
mented are briefly described. We also perform a risk analysis of Yenta and describe
potential security risks, including some which are explicitly outside of our threat
model.

Finally, we describe related work, which includes other types of matchmaking sys-
tems, other decentralized systems, and other systems and software that have been
designed for explicitly political purposes. We then draw some general conclusions.
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1.8 SummaryThis chapter has presented the social and political motivations for this work, namely
the protection of certain civil liberties, such as privacy, by starting with such motiva-
tions and then designing technology that can help. We have described what personal
privacy and its protection means, demonstrated some of the social, political, and tech-
nical problems with centralized solutions, and touched upon some of the advantages
of decentralized solutions. We have then summarized, very briefly, the work that will
be presented in later chapters.
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CHAPTER 2 System Architecture

2.1 IntroductionIn this chapter, we present a general architecture for a broad class of applications. As
discussed in Chapter 1, the architecture is designed to avoid centralizing information
in any particular place, while allowing programs run by multiple users to collaborate
by using information that each of them possesses. Such an architecture is particularly
useful for protecting personal information from unauthorized disclosure, but it also
has some advantages in terms of robustness various types of failure, including single
points of physical failure.

This chapter will describe the architecture by answering the following questions:

Section 2.2• The traits shared by the applications we are considering

Section 2.3• The problems are we not addressing in the space of possible applications

Section 2.4• For concreteness, our sample application

Section 2.5• The overall architecture proposed

Section 2.6• Determining one user’s characteristics

Section 2.7• Bootstrapping

Section 2.8• Forming groups of agents, including:

Section 2.8.1• Data structures used in clustering

Section 2.8.2• Getting referrals

Section 2.8.3• Privacy of the information exchanged

Section 2.9• Further clarification on the exact nature of a cluster

Section 2.10• Some uses for the resulting groups

Section 2.11• Reputation systems

Section 2.12• Running more than one copy of the application on a single host

Section 2.13• Hooks for collecting evaluation data

As discussed in Chapter 1, we obtain a large amount of our privacy and security pro-
tection from a decentralized architecture; that architecture is discussed in this chapter.
We obtain other elements of protection from the techniques and principles advanced
in Chapter 3; that chapter is heavily dependent upon this one.
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Some technical privacy 
issues are explained in this 
chapter

In a few sections of this chapter, we delve into particular aspects of privacy and secu-
rity in advance of Chapter 3’s coverage. We do so because certain strategies for pro-
tecting user privacy are more easily explained near the description of some
architectural feature than they are in a separate chapter.

Several issues are deferred This architectural description defers several topics to later chapters. Some of the
design decisions made here will be clearer when the entire picture has been presented.
In particular, later chapters will specify:

Chapter 3 • How the privacy and security of the architecture really work

Chapter 4 • Details of how the sample application, Yenta, makes use of this architecture

Chapter 5 • How to evaluate how the system as a whole is performing

Chapter 5 • Other applications besides the sample application

2.2 Application traits In the discussion that follows, we take user to be some individual person, application
to be some particular user task which is implemented by running a program, and sys-
tem to be a set of interconnected users, all running copies of some piece of code that
implements the application. A familiar example of such a definition would be the
Internet mail system, which consists of users all running applications (mail readers)
which all do the same task, even though the applications themselves are not all identi-
cal—they run on different computers, come from different vendors, and have a differ-
ent set of features which they implement. Note that the Internet mail system does not
quite fit the definition given below of the applications we support; it serves only to
make clear what we mean by user, application, and system.

Systems, applications, 
users, instances, and 
agents

For clarity, let us distinguish between the concepts of an application and an instance
of an application. The application itself is the body of code that users may run; it is
the same for all users who run the same version. The instance of that application is the
individual copy that any given user is running on some machine, and includes what-
ever personalized state may exist for the user. In the discussion that follows, we refer
to an individual instance of some running application as an agent. (Some examples
and definitions of agents may be found in [16][27][30][31][45][46][59][60][88][98]
[101][106][112][113][114][143][159][160][162][163][164]—and many which are
not listed there are mentioned at appropriate points elsewhere in this dissertation). We
define an agent here to be a semiautonomous piece of software running on a particular
computer, which may be personalized and has long-term state. We do not consider
anthropomorphism or the ability to move the thread of control to another machine
(e.g., process migration) to be a part of the definition we use here. The application is
implemented by users running a distributed system of agents.

Let us turn to the traits which are shared by all the applications we are considering.
Later sections will justify some of the assumptions and limitations.

• More than one user exists in the system. If there is only one user running the appli-
cation, then we do not consider it a system.

• The users, and the agents they run, are all peers of each other. There is no distin-
guished user or agent, and no pre-established hierarchy.

• The application requires that some of its users wish to interact with some of the oth-
er users, by sharing some information between them.

• Not every user, nor his or her agent, need know about every other user or agent, nor
does any user or agent require complete information about all other users or agents.

• It is appropriate to group users, on the basis of some attribute, into clusters which
all share, to some extent, that attribute. Any given user might be in more than one
cluster simultaneously, depending on the user’s attributes.
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• It is possible to form a partial order among user characteristics, such that we can
say that some characteristic of user A is more like user B than user C.

• It is likely that at least some of the information in the system should be protected
from disclosure to others, either inside the system or outside of it.

• Each of the users of the system can run their own copy of the application, on some
computer at least nominally under their own control.

• The users are connected via a high-availability network, such as the Internet.

If there is no way to compare user characteristics, and no way to group users into even
approximate clusters based on similarity of those characteristics, than many of the
assumptions of our architectural model are violated. In particular, the architecture
assumes that it can climb a gradient in order to form clusters (see Section 2.8), and
that many operations are restricted to users in a particular cluster. If these are not
true, then the architecture may not work very well. (Whether it works well enough
even if some assumptions are violated is dependent upon exactly what the application
is; we shall not further investigate what the properties of such an application might
be.)

Because we are assuming that there exists information in the system that should be
protected against others, and because of the arguments advanced in Chapter 1, partic-
ularly in Section 1.5, about the problems of trust when it comes to centralized sys-
tems, we assume that users must have the ability to do local processing of information
they consider to be confidential. This requires that users have access to a computer
that can run the application, and which they may be reasonably assured is under their
administrative control, not that of some third party. Systems in which users must do
computation in environments they do not control are explicitly not addressed by this
work.

The applications we are considering are based around the controlled sharing of infor-
mation between users. To this end, we assume that there is some way for the users’
agents to actually communicate with each other, such that we define the set of agents
as a system. For simplicity of discussion, we assume that this requires a network link-
ing all agents in close to real time, e.g., the Internet. Generalizations of the fundamen-
tal architecture can certainly be made for store-and-forward networks, such as is
usually assumed for mail transfer systems, and systems in which users are only infre-
quently connected—such as home users who only occasionally dial up to talk to the
network—but we shall not explicitly address those considerations here. Most of the
architecture we present is still usable in such a system, albeit with much greater
delays between transactions between agents. Such delays may make the applications
inconvenient to use in practice, even if they are theoretically still functional.

2.3 Application traits 
we are not 
considering

It is clear that the criteria above do not apply to all possible applications. For example,
if there is only one user running the application, then we do not consider it a system at
all. And if no user needs any information from any other user, then again it is not a
system, because all the individual copies of the application do not interact with each
other, and are running standalone, in a disconnected configuration. 

By the same token, we assume that, even though users must communicate with each
other, we never have 1-to-n or n-to-n interactions, where n is the set of all users or all
agents in the system. There are two reasons to disallow such scenarios:

• Robustness. Systems in which any entity, or all entities, must see every other entity
in the system tend to become extremely fragile as the number of entities grows.
One way to see this, in a distributed system, is to take as a given that some proba-
bility p that some single entity will be offline for some reason—such as crashes,
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network disconnections, and so forth. We assume that there is no redundancy (all
entities must be online and known), that failures are independent of each other, and
that there are n entities in the system. This means that the chance that the system as
a whole scales exponentially poorly with n. Clearly, such a system will almost nev-
er function if n is large and p is not very close to zero.

• Security. Implementing the system as a non-distributed, e.g., centralized, system,
can help with performance—if the central node is up, then presumably all informa-
tion about all entities is known at that time and may be used. However, this still has
unfortunate implications for security, since we have now established a single point
of failure at which all entities’ information may be compromised. If the system is
instead decentralized, but all entities must still know all other entities’ information,
then the number of points where all entities’ privacy may be compromised has now
risen to n, the number of entities in the system. The situation is now worse, not bet-
ter. We shall have much more to say about the security implications of our assump-
tions in Chapter 3.

2.4 Yenta—the 
sample application

For concreteness, let us mention here the sample application—Yenta—that has been
developed. Yenta was developed both to test the architecture, and to serve as adver-
tisement and role model for the technique. (Recall, from Chapter 1, that the purpose
here is to encourage other developers and systems architects to use these techniques
to avoid depriving users of their privacy in those other applications.) We will give
much more information about Yenta’s operation in Chapter 4—this is only a very
brief summary.

Yenta is a matchmaking system. Yenta is not necessarily a romantic matchmaker.
Instead, it is designed to facilitate serendipitous introductions of people who may or
may not know each other, and to support group interaction among users who share
common interests. Two possible scenarios of Yenta’s use are:

• Inside a company. Many organizations often have the problem that people who
should know what each other are doing do not. This is commonly the problem
when two people are working on a similar problem, but report to different manag-
ers. In this case, it may be that the common point in their reporting structure is suf-
ficiently high in the hierarchy that it fails to allow either of the two individuals to
know about each other’s work. While one might hope that the two individuals
might meet accidentally and happen to mention their work to each other, such an
event is not assured. (Even if the two do meet, they may fail to mention their com-
mon interest—it is rare that people regale each other with a list of everything they
are working on at the moment.) Yenta aims to help, by serving as an introducer for
these two, based on this common interest.

• Among people who have never met. Here, the problem is one of attention and inter-
actional bandwidth. Even if we assume, for instance, that people who share a sim-
ilar interest happen to both be on the same mailing list or Usenet newsgroup, not
everyone posts. Indeed, if everyone did post, traffic volume might be so high that
keeping up with the discussion might prove impossible. Yenta aims to help intro-
duce lurkers—those who rarely or never post—to others who share their interests,
without forcing them to speak publicly, and without subjecting everyone to the re-
sulting traffic.

Each user runs his or her own copy of Yenta. Each Yenta determines its user’s interests
by scanning his or her electronic mail and files—this is one of many reasons why
Chapter 3’s discussion of privacy and security is so important. Agents join clusters of
others, whose users share one or more interests, and users may send messages to indi-
viduals in the cluster or to the entire cluster as a whole. Users are pseudonymous, and
their identities are never revealed by Yenta itself. (If a user sends a message to another
that explicitly states his or her identify, that is not Yenta’s concern.) Because pseud-
onyms are the norm, Yenta also makes available a reputation system to aid in deter-
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mining whether to accept an introduction to another user, to help provide some
context in interpreting another user’s messages, or to enable automatic rejection of
messages from users whose reputations are not good enough.

2.5 The overall 
architecture

The overall system architecture is a distributed, multi-agent system. Each user runs
his or her own copy of the application—an agent. The agent has access to persistent,
storage on the user’s computer, e.g., a filesystem. This filesystem is used to store state
across crashes and shutdowns. It may also be used for other purposes—for example,
in Yenta, it is used as the source of the user’s interests. The agent is assumed to run for
long periods of time—effectively indefinitely—rather than being started up and shut
down soon thereafter. It is thus assumed to be available to the user, and the rest of the
network, most or all of the time. All communications and on-disk storage are assumed
to be encrypted; Chapter 3 has much more to say about this requirement.

Agents communicate with each other by opening connections to each other across the
network (using TCP [135] except in certain unusual circumstances, as below). Since
not all copies of the given application should be assumed to be the same version,
agents should identify themselves early in any given communication by specifying
their current version information, a list of protocols or operations handled, or both—
this aids in interoperability, allowing newer agents to be backwards-compatible with
older agents where feasible.

Each agent must also be able to communicate with its user. We assume, for simplicity,
that the user possesses a web browser, and the agent speaks HTTP [12][52] to that
browser. This greatly simplifies design of the application, since emitting HTTP is a
much easier implementation challenge than the engineering that goes into the typical
browser.

A diagram of the basic structure appears below.

2.6 Determining one 
user’s characteristics

The architecture assumes that users have particular characteristics that make them
suitable candidates for clustering into groups. Members of the group share at least
one characteristic, to some degree, in common. How these characteristics are deter-
mined is in large part application-specific; we discuss the case for Yenta in
Section 4.7.

An example from Yenta

We assume that these characteristics are comparable in some algorithmic fashion. We
specified this in Section 2.2 when we said that we must have a partial order available
in comparing one user’s characteristics to another. In the case of Yenta (see
Section 4.4.4), these characteristics are sets of weighted vectors of keywords, and the
comparison is performed by dotting vectors together.

Any given user may have several characteristics. For example, in Yenta, any given
user is presumed to have several interests at the same time. These characteristics are
assumed to be sufficiently different from each other that our comparison function con-

Figure 1: Yentas talk to each other and to their users’ web browsers
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siders them dissimilar from each other—if this were not the case, then at least two of
these characteristics should be merged into a single characteristic.

2.7 Bootstrapping When an agent is starting up for the very first time, it may not know, a priori, of any
other agents for the application. In this case, it may use a bootstrapping phase in
which it undergoes a discovery process that finds at least one other instance of the
application. After this bootstrapping phase is accomplished, it need not be repeated.

This bootstrapping process can take many forms. Examples include:

• Broadcasting on the local network segment, for networks that support broadcasts

• Asking the user for any other machines known to be running the application

• Having existing agents periodically register their existence with a central server—
the bootserver—and having newly-created agents ask this server for possibilities

Security of the bootserver Yenta uses all three of these strategies. We shall have more to say about the security
implications of this in Chapter 3; however, note for the moment that the only relevant
aspect of this bootstrapping phase is that the agent find any other instance of itself
with which to communicate. That instance need not share any of the user’s character-
istics. This makes design of the bootstrap server both simple and secure, since it need
not maintain any identifiable user information, except the IP address at which some
agent was found recently—for most applications, this is not a serious infringement
upon user privacy. If the database is accidentally destroyed, it will be regenerated as
running agents periodically register. The central server may also, of course, be spe-
cific to a particular organization if desired, rather than there being a single such server
on the entire Internet.

Note that if the application being considered is so ubiquitously deployed that the
chances are very high of another one of its agents existing on the local broadcast net-
work segment, or of a new user already knowing of another agent, the central server
becomes redundant.

Bootstrap broadcasts are 
very different from cluster 
broadcasts

Be aware that agent broadcasts, used in the sense we mean here for bootstrapping, are
not the same sort of mechanism that we specify in Section 2.10, when we talk about
communicating with a group of other agents. This is an important distinction:

• Cluster broadcasts, as described in Section 2.10, use encrypted, point-to-point
transmission of messages, which are then recursively flooded to neighboring agents
using the same mechanism. The flooding algorithm is designed to prevent loops by
detecting graph cycles. Messages are transmitted via TCP [135].

• Bootstrap broadcasts, as described here, use cleartext, broadcast-medium trans-
mission. On IP networks, this use is accomplished via UDP [134], since UDP sup-
ports broadcast, whereas TCP does not. Since we are not transmitting any personal
information in a bootstrap broadcast—indeed, since the broadcasting agent may
not have any yet—and since the message is intended for maximum reception, we
do not encrypt its contents.

Broadcast responders 
must wait a random time 
before responding!

For broadcasting to work, all agents must be prepared to listen for, and respond to,
bootstrap broadcasts. In general, both broadcast requests and replies should include
information about the application—to enable multiple applications to share the same
port—and its version—to enable backwards-compatibility with older applications. In
addition, listeners on Ethernet-like [82] networks must implement random delay in
their responses, so as to avoid a packet storm due to collisions on the wire caused by
many agents responding at exactly the same time. Ethernet implementations are gen-
erally designed to incorporate random exponential backoff, such that collisions cause
all transmitters to wait a random, exponentially-increasing amount of time before
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each retransmission, but such packet storms can still last tens of seconds on a network
segment with many responders. In the case of Yenta, for example, agents responding
to a broadcast wait a random time, continuously and uniformly distributed between 0
and 2 seconds, before responding to any request. Since transmitting a packet takes
between 10 and 100 microseconds, the chances of many responses colliding are negli-
gible.

2.8 Forming groups 
of users—clustering

We now come to the core idea which makes our distributed system function, namely
how agents are supposed to find each other and how they organize into clusters.

Any given agent starts knowing at least one other agent, via the bootstrapping mecha-
nisms described in Section 2.7 above. Agents then use one-to-one communication of
their characteristics, and a referral algorithm, to find suitable clusters.

2.8.1 Data structures used 
in finding referrals and 
clusters

For concreteness, assume that we have two agents, named A and B, which each have a
few characteristics associated with them, e.g., CA0, CA1, etc. Each of these character-
istics describes something about the agent’s user. Each agent also contains several
other data structures:

• A cluster cache, CC, which contains, for each characteristic, the names of all other
agents currently known by some particular agent as being in the same cluster for
that characteristic. Thus, if agent A knows that its characteristic 1 is similar to char-
acteristic 3 of agent B, then CCA contains an entry linking CA1 to CB3. There are
two important limits to the storage consumed by such caches: the number of local
characteristics, cl, that any given agent is willing to remember about itself; and the
number of remote characteristics, cr, that this agent is willing to remember about
other agents. The total size of CC is hence bounded by c1 times cr. In an implemen-
tation that wishes to save space, limiting cr before limiting cl makes the most sense,
as this limits the total number of other agents that will be remembered by the local
agent, while not limiting the total number of disparate characteristics belonging to
the user that may be remembered by the local agent.

• A rumor cache, RC, which contains the names and other information, as described
below, from the last r agents that this agent has communicated with. Implementa-
tions should bound this number, since otherwise any given agent will remember all
of the agents it has ever encountered on the net and its storage consumption will
grow monotonically. Reasonable values for bounds are application-specific; Yenta
uses values of 20 to 100.

• A pending-contact list, PC, which is a priority-ordered list of other agents that have
been discovered but which the local agent has not yet contacted.

The rumor cache contains more than just the names of other agents encountered on
the network. It also contains some subset, perhaps complete, of the value of each
characteristic corresponding to those agents. Exactly how much of each characteristic
is stored is application-specific.

2.8.2 Referrals and 
clustering

Now that we have all this mechanism in place, performing referrals and clustering is
relatively uncomplicated.

Comparing one agent 
with another

The process starts when some agent (call it A) has ascertained its user’s characteris-
tics, and has found at least one other agent (call it B) via bootstrapping. The two
agents exchange characteristics. Agent A then performs a comparison of its local
characteristics with those of agent B. Agent A builds an upper-triangular matrix
describing the similarities between each of its local characteristics and those locally
held by B. Then it finds the highest score(s)—e.g., closest similarity—between any
given characteristic (say, CA1) and B’s characteristics. If there is no such value above
a particular threshold, then the local characteristic under consideration does not match
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any of B’s characteristics, although some other local characteristic, e.g., CA2, might
match.

Note that this inter-agent similarity metric cannot, in general, assume that it knows
about all or even most of the other agents on the network. Hence, algorithms which
assume that they can take means or do standard deviations to compute whether this is
a particularly good match do not have the data to make this determination. Instead,
the application must either use fixed thresholds, or attempt to refine its criteria after
seeing some number of other agents’ characteristics—which implies that the compar-
ison metric is nonmonotonic, e.g., that it may behave differently for different inputs
based on its prior history. In the sample application—Yenta—a simple thresholding
scheme is used.

When we are done comparing characteristics from A with characteristics from B,
agent A may have found some acceptably close matches. Such matches are entered,
one pair of characteristics at a time, in A’s cluster cache. B is likewise doing a com-
parison of its characteristics with A and is entering items in its own cluster cache for
its own use.

Comparisons are not 
symmetric

Since each agent is making its own determination of similarity, and since they may be
running different versions of the application, or have different local data available—
nothing specifies that an agent must transmit all of its information about a particular
characteristic to any given other agent—they may reach different conclusions. In
other words, A may decide that B shares some characteristic with A, whereas B may
not decide that it shares any characteristics with A. This asymmetry is perfectly
acceptable. In the case above, it means that A will enter B in its cluster cache for some
characteristic, but B will not enter A in its cluster cache for any characteristic.

Getting referrals Whether or not any matches were found that were good enough to justify entering
them in a cluster cache, the next step is to acquire referrals to agents that might be
better matches. In the example here, agent A asks agent B for the entire contents of its
rumor cache, and runs the same sort of comparison on those contents that it did on
agent B’s own local characteristics—but with a more forgiving threshold for what
constitutes a good match. For example, if the comparison metric were to return a
value between 0 and 1, ranging from no match to perfect match, then the threshold
used to determine whether to add some characteristic from B to A’s cluster cache
might be 0.9, while the threshold used to determine whether a rumor-cache match is
good enough might be 0.7.

The purpose of using a more forgiving threshold is to allow A to find someone else
who might be reasonable, even if they aren’t a great choice. Agent A will then add the
agent corresponding to each such match to its pending-contact list, and will contact
them in turn.

Agent A, having now acquired some likely candidates, will execute the same algo-
rithm it just used with B: It will see if any of the agents is suitable to be added to A’s
cluster cache, and will also find other candidates who might be worth contacting. If
the pending-contact list is kept sorted by desirability—presumably, by sorting the
pending agents to contact by the result of the comparison metric—then A is executing
a hill-climbing algorithm to finding a good match. In other words, if we model a land-
scape in which the height of any given hill is its similarity to some characteristic of
A’s, and A’s current set of candidates as some point on the hillside, A should attempt
to always travel in the direction of maximum upward gradient, essentially climbing
hills in this space until it reaches a maximum. Note that we are climbing a different
landscape, composed of different hills, for each characteristic.
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Hill-climbing versus local 
maxima

Hill-climbing algorithms can get stuck at local maxima which are not global maxima.
In practice, this appears not to happen in our sample application, neither in simulation
nor in actual use. To get stuck at a local maxima requires that the system act thermo-
dynamically cold, in the sense of simulated annealing. Here the metaphor is one of
energy—a marble rolling around in a potential well cannot escape this well unless it
possesses enough energy to roll uphill past an adjacent peak. Similarly, one balanced
on a hillside might roll into the valley, but cannot hope to reach an even higher hilltop
unless it something gives it extra energy. Random additions of extra energy—which
may eventually roll a marble out of a stuck state—are thus similar to heating a system,
hence we can talk about the thermodynamic temperature of a system.

Real data appears to be noisy enough that local maxima which are not global maxima
are not a problem—there is enough inaccuracy in the comparison function, and in the
data it is applied to, that agents do not get stuck. Furthermore, in a real system, one
might expect that agents are constantly joining (and perhaps leaving) clusters, which
will also tend to disrupt many such local maxima—it only takes one new agent that is
a little better matched to knock some agent off its local maximum.

It is entirely possible that one can generate disconnected islands of agents which do
not know about each other, and there is no feasible way to completely eliminate this
possibility if we assume—as we do explicitly in Section 2.2—both that there is no
central point in the system that knows about all agents, and that no agent is required to
know about all others. However, such islands are likely to be rare, for several reasons:

• The bootstrap server (see Section 2.7) tends to tell brand-new agents about many
existing agents, all over the world, which tends to ensure a wide sample of starting
agents.

• It only takes one bridge between two formerly-disconnected islands to inform a
large numbers of agents about each others’ existence. The referral algorithm tends
to encourage this behavior, since many agents will spread the news.

Metrics must allow a 
partial order

Of course, for this to work at all, the comparison metric must make available a gradi-
ent, via a partial order, as specified in Section 2.2—this is why the comparison func-
tion must not be a simple, binary predicate. Exactly how this predicate works is
application-specific, but it must return some scalar value that we can compare. Issues
of thermodynamic noise also tend to avoid pathologies, such as partial orders that lead
to cycles (A>B>C>A). It may be the case that some applications can suffer from this
problem; but we have not observed it here, and determining the exact conditions
under which such pathologies might occur is beyond the scope of this work.

If we do not have a comparison metric which allows hill-climbing, then the referral
process degenerates to a process more resembling diffusion in a gas—each agent sim-
ply explores the space of other agents at random. Results will still be obtained in this
scenario, but very slowly—the situation goes from something approximately O(n) to
O(n2). Another way to look at this is to imagine that each agent is walking around in
some physical space: a gradient-driven process moves the agent O(n) steps from the
origin, where n is the number of iterations, whereas a random process moves the
agent only O( ) steps from the origin.

Cluster cache is not for 
third-party data

Note that agent A never adds some agent, say W, to its cluster cache on the basis of
B’s say-so. After all, B’s idea of W’s characteristics could be wrong for any number of
reasons. For example:

• W’s data might be out-of-date or otherwise stale.

• W might have deliberately omitted some data in its transmission to B, perhaps
based on some aspect of B’s network address or reputation (see Section 2.11).

• B’s idea of W’s data might not even truly belong to W at all—see Chapter 3 for why
this might be so.

n
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For all of these reasons, we use B’s rumor cache information only to add potential
candidates to A’s pending-contact list. When A eventually contacts any given candi-
date, a good match will be added to A’s cluster cache in the usual way.

Referrals are like human 
word-of-mouth

This procedure acts somewhat like human word of mouth. If Sally asks Joe, “What
should I look for in a new stereo?” Joe may respond, “I have no idea, but Alyson was
talking to me recently about stereos and may know better.” In effect, this has put Aly-
son into Sally’s pending-contact list (and, if Joe could quote something Alyson said
that Sally found appropriate, perhaps into Sally’s cluster cache as well). Sally now
repeats the process with Alyson, essentially hill-climbing her way towards someone
with the expertise to answer her question.

2.8.3 Privacy of the 
information exchanged

The description so far suffers from a number of unfortunate security problems. For
instance, when agent A sends its characteristics to agent B, B knows everything that A
sees fit to tell it—and also knows A’s IP address, hence making backtracing the infor-
mation to the actual user possibly very easy. Furthermore, B will propagate informa-
tion about A to any third parties which may care to ask B for its rumor cache, and this
will continue to be true until B decides to flush A’s information from its rumor
cache—which could be never, since when to flush this information is entirely at B’s
discretion.

We have two strategies for avoiding this outcome: hiding the identity corresponding to
any given characteristic, and mixing others’ clusters into the local user’s data. In
practice, we do both.

Hiding identities via 
random reforwarding and 
digital mixes

We can use several strategies to hide the identity corresponding to a given characteris-
tic. Techniques related to random reforwarding and digital mixes are discussed more
extensively in Section 3.4.3. They depend both on anonymity of individual agents and
the ability to broadcast into groups of agents, using keys known only to a subset.

Plausible deniability via 
other agents’ data

One way of establishing a user’s probable or possible innocence—in the terminology
of Section 3.2.2—without having to go to the extremes of Section 3.4.3 is by includ-
ing other users’ data with our own. To enable plausible deniability of characteristics,
it suffices for an agent to lie. In addition to offering its own characteristics, the agent
can offer some characteristics that are currently stored in its rumor cache. By defini-
tion, such characteristics are not only not those of the offering agent, but they do not
even reflect any of its own characteristics accurately—if they did, they would be in
the agent’s cluster cache, not its rumor cache. The agent offering the characteristics
certainly knows which ones came from its cluster cache—and thus reflect the charac-
teristics of its user—and which came from the rumor cache—and thus do not. How-
ever, the agent receiving these characteristics has no way to know.

Depending on the size of its rumor cache, the deceitful agent could easily be able to
offer, say, ten times as many characteristics as it really owns. Thus, the probability of
any single characteristic offered by the agent actually reflecting some characteristic of
its user would be only 10%. Assuming that an agent is willing to store arbitrarily
many characteristics in its rumor cache—and is willing to subject it and all of its peers
to an arbitrary amount of work—this percentage can be made arbitrarily low.

In order to know which characteristics actually belong to a given agent, an attacker
would have to be a party to many exchanges, looking for those characteristics which
are always offered—such characteristics presumably correspond to the real character-
istics of the agent’s user. This attack could only work if the agent of interest either
offers only subsets of its rumor cache, or runs long enough to flush entries from its
rumor cache. A local eavesdropper—one who can listen to all of the given agent’s
traffic—could not accomplish this, because we assume, as advanced in Chapter 3, that
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all communications are routinely encrypted. Instead, the attacker would have to actu-
ally compromise many agents on the network, and each of those agents would have to
interact with the target agent, for the attack to succeed. While this is possible, it vio-
lates our assumption in Section 3.2.1 that an attacker does not control an arbitrarily
high proportion of all agents with which the target agent interacts.

2.9 What exactly is a 
cluster?

In the discussion above, we have used the term cluster as if it denotes a particular,
well-defined group of agents, and as if all agents within the cluster agree on its mem-
bership. This is not in fact the case. Let us examine the meaning of a cluster more
closely.

A cluster is not a simple 
transitive closure

Consider the point of view of a single agent A, which believes itself to be in a cluster
of agents which share characteristic C. This cluster is composed of all other agents in
A’s cluster-cache for C. It is also composed of all of their cluster-cache entries for
characteristic C, and so on. In other words, if we treat the existence of some agent B
in some agent A’s cluster cache as a unidirectional link from A to B, then A’s cluster is
the transitive closure, starting from A’s cluster cache for C, of all agents which are
reachable by traversing these links. The links are unidirectional, e.g., forming a
digraph and not a graph, because membership in a cluster cache is not guaranteed
symmetric—see Section 2.8 above.

If all agents shared exactly the same value for C, then this definition could be recur-
sively enumerated by A, simply by walking this digraph, keeping track of which
agents have been visited, in the manner of a mark-sweep garbage collector [90]. One
might argue that A shouldn’t walk this digraph—this would eventually result in A
having to remember every agent in its cluster, which violates the architecture criteria
in Section 2.2—but it would at least be theoretically possible.

Characteristics are likely 
to be unique

However, all agents presumably do not have exactly the same value for C. We assume
that characteristics may be complicated entities, capable of taking on a large number
of values. For example, in Yenta—see Chapter 4—characteristics are weighted vec-
tors of keywords. In this application, the exact makeup and weighting of any vector is
unlikely to be reproduced by any other agent.

An example from YentaContinuing our Yenta-based example, suppose that we have three agents, each with
slightly different interests. Yenta X’s user is interested in cats. Y’s user is interested in
both cats and dogs. Z’s user is interested in dogs. A schematic of this situation appears
in Figure 2 below, where ellipses represent—approximately—the set of agents each
Yenta considers to be in its own cluster. Note that the cluster names, C1-3, are for
explanatory convenience only—as we stated immediately above, clusters have no
overall name of their own, but are described only by the set of which agents consider
themselves to have similar characteristics.

Figure 2: Clusters and overlaps

Cats
Cats
Dogs Dogs

Yenta X

Yenta Y

Yenta Z

C1 C2 C3
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Assume, for the sake of discussion, that the metric which compares interests looks
only at overlaps in words in the keyword vectors exchanged. This means that X and Y
consider themselves to be in cluster C1 (they are both interested in cats), and Y and Z
consider themselves to be in cluster C2 (they are both interested in dogs). However,
should X and Z consider themselves to be in the same cluster?

The answer is no. X and Z are not both in C1, C2, or even some third cluster, given the
interests expressed here. As far as we can tell from the comparison metric—which
states that a shared interest must involve an overlap in keywords—X and Z are not
interested in the same thing.

What is a gerrymandered 
cluster?

This means that X should not walk the digraph of all other agents’ cluster-cache
entries in order to compute which other agents are in its cluster—to do so would
incorrectly cause X to believe that Z is in cluster C1, when it most clearly is not.; Z’s
user has no interest in cats. We refer to such an outcome—in which X would believe
that Z is in cluster C1—to be a gerrymandered cluster. We use this term by analogy
with its political use: a gerrymandered electoral district is one that has been stretched
out of its natural shape—generally one with close to minimal circumference for its
area—into one that unnaturally includes areas that seem better connected to different
districts. Similarly, a gerrymandered cluster is one that unnaturally includes too many
characteristics which, in reality, have nothing to do with each other. In effect, viewing
interests as areas, such a cluster is stretched out in nonsensical ways.

Trusting other agents’ 
judgments leads to 
gerrymandered clusters

Why would this happen? Because X, in recursively enumerating the members of clus-
ter C1, would be trusting the judgment of Y about what an interest really means. As
far as Y is concerned, it is in a single cluster, C2, which happens to specify interests
which mention either cats or dogs. But this is not a view shared by either X or Z,
whose interests are more restrictive.

No global ontology

No distinguished cluster 
names

Remember that nowhere have we stated that characteristics (in the general case) nor
interests (in the case of Yenta) have distinguished names or some other attribute that
would make them unambiguously identifiable as being the same, or different, across
all agents in the system. We have provided no central authority to impose a consistent
ontology on all agents in the system. Furthermore, for all agents to reach a consensus
among themselves, we would have to provide some mechanism to permit, in the limit,
propagating such a proposal to the entire system and making it consistent. We have
provided no such mechanism. Instead, we provide only the assurance that there exists
a metric which can compare one agent’s characteristics with another and to reach a
local, not a global, decision about similarity of characteristics.

Thus, one agent should not trust another about what a characteristic for a third agent
really means, because one agent has no assurance that another shares its ontology. All
such judgments must necessarily be local—meaning that, if X is to make a determina-
tion about whether Z shares some characteristic with it, it needs to examine Z’s data
directly. It cannot trust the judgment of some intermediate agent Y. This does not
mean that X must communicate directly with Z to make this determination, however.
As long as X may be assured that it receives a faithful copy of Z’s data, no matter
where this copy comes from, X may make the comparison. But it must make the com-
parison itself.
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2.10 Using the 
resulting clusters

Once we have clustered agents based on characteristics shared by their users, what
can we do with the resulting clusters? We shall investigate some uses of these clusters
below. Applications which fit the criteria advanced in Section 2.2, but are substan-
tially different from Yenta, may have additional uses for these clusters.

The basic operations we will investigate here concern:

• Communicating from one user to a single other user

• Broadcasting to all other users in a cluster

• Hiding the origin and destination of communications

By the end of this subsection, we shall also have derived the rationale and use for the
basic components of any message transmitted—namely, a tuple consisting of the mes-
sage itself, a unique-ID, and a cluster characteristic. Many ways of presenting such
messages are possible; their real-time or close to real-time nature makes it reasonable
to use an email-like user interface, or something akin to Zephyr instances [1][36].

2.10.1 One-to-one 
communication

In the simplest scenario, one agent simply transmits a message to some other agent,
using the same sort of network connections as are used to swap characteristics.
Whether or not the two agents are in the same cluster is irrelevant—once one of the
agents has found the IP address of another, a connection may be opened. However, it
is presumed that most such communications are between agents which believe each
other to share characteristics—loosely, they are in the same cluster—because we pre-
sume that users who share characteristics have the most to say to each other.

2.10.2 Broadcasting to all 
agents in a cluster

.A more complicated scenario involves sending a message to all other agents in a
cluster. In this case:

• The broadcasting protocol should be efficient, and must terminate.

• We must handle the case of gerrymandered clusters, as described in section
Section 2.9.

EfficiencyEfficiency in the protocol means that no one agent should be required to do all the
work of communicating with all other agents in its cluster. (Indeed, as shown in
Section 2.9, it cannot even determine exactly what all the other agents in the cluster
are.) Hence, the way we implement broadcasts is to use a flooding algorithm, familiar
from the Usenet news system [83]. When an agent wants to send a message to all
other agents in its cluster, it sends it to all other known agents in its cluster cache, with
instructions that the message should be forwarded to all other agents in their cluster
caches, and so on recursively.

TerminationIf this was the entire protocol, it would fail to terminate, because the possibility exists
that there will be cycles in the digraph describing which agents are in which other
agents’ cluster caches. A message sent into this graph would circulate endlessly. To
avoid this, messages are tagged with a unique identifier (UID), and every agent com-
pares incoming broadcast messages with a cache of recently-seen UID’s. If this mes-
sage has been seen before, it is dropped immediately, and not propagated. 

The UID cache in each agent must preserve incoming UID’s long enough that there is
a low probability that the message might still be circulating by the time it is timed out
of the cache. This probability need not be zero, and cannot be: If we assume bounded
storage in any given agent, but also assume that any agent may receive a message,
crash, and then stay down an arbitrary length of time before coming back up and
attempting to send the message, then we cannot set any particular timeout that is long
enough. Instead, we must merely guarantee that the effective gain of the system—the
number of messages emitted by any given agent, on average, for a single message
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received—is low enough that messages are eventually damped out. If this is the case,
then circulating messages will eventually vanish from the system, even though any
given agent may occasionally see a duplicate message from some time far in the past.
(Applications which cannot ever tolerate a duplicate message must arrange to main-
tain UID’s forever, or must reject messages older than a certain age as part of their fil-
tering algorithm.)

Avoiding gerrymandering We now turn to the case of gerrymandered clusters. Consider the case of the three
example Yentas described above in Section 2.9. Suppose that Yenta X wishes to
broadcast to its cluster. Clearly, Y should receive such a broadcast, because the two
Yentas share an interesting in cats. However, Z has no interest in such a message, nor
would any other Yentas in C3. This means that Z must have some way to know that it
should drop the message—otherwise, messages intended for what X considers C1
(and what Y considers C2) would also propagate into C3, and presumably far into
clusters beyond as well.

To avoid this scenario, messages that are transmitted also include the characteristic
which describes the cluster, from the point of view of the original sender of the mes-
sage. It is very important that this is the original sender’s characteristic—if this were
not the case, then third-party recipients of the message (Z in our example) would
again be heeding some intermediate party’s idea of what a given cluster was about.
Given that the characteristic is transmitted along with the message, each agent in the
chain can evaluate whether the message still seems relevant to its own set of clusters.
If the message is relevant to none, then it is dropped. (Note that it is possible that X’s
original characteristic might be deemed to match more than one cluster in some
receiving agent; in that case, the message should be duplicated and broadcast into
each cluster.)

In order to aid agents receiving one-to-one (non-broadcast) messages, and to make the
protocol simpler by increasing commonality between the two cases, we also transmit
the relevant characteristic along with the message even in the one-to-one case. We can
only do this if the transmitting agent actually knows which cluster the recipient’s
agent is in; it may be the case that the user wishes to transmit a message to a particular
agent irrespective of its cluster. In this case, no characteristic will be sent.

A complete message tuple We have thus arrived at the complete set of tags that must accompany any given mes-
sage between agents. A complete message thus consists of:

• The message itself.

• The message’s UID.

• The characteristic associated with the cluster—required if a broadcast, suggested if
one-to-one.

2.10.3 Hiding identities Let us now consider the case in which it is important to hide the identify of the send-
ing or receiving agent. We shall investigate this case in more detail in Chapter 3, but
we should point out here that this capacity is important to make available. Without the
ability to hide message originators and recipients, traffic analysis may be employed to
guess information about the agents in the system.

For example, given the three-Yenta scenario in Section 2.9, suppose that we are an
eavesdropper who can monitor communications between agents, even though we may
not be able to decrypt them. If we know, though some mechanism, that Yenta X is
interested in cats, and see substantial message traffic between X and Y, we can make a
reasonable guess that Y is interested in cats as well.
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The easiest way to defuse this threat is to send any message for a given agent in a
cluster to all agents in the cluster—in other words, to broadcast it. Assuming that the
connectivity of the cluster, and the characteristics of each agent in it, are suitable, we
have an arbitrarily high probability that the target agent will receive at least one copy
of the message. Obviously, if the message is also intended to be private, it must be
encrypted using a key that only the recipient knows; we will address this more fully in
Chapter 3. All agents which receive the broadcast attempt to decrypt it, but only the
target agent possesses the correct private key; all other agents fail to decrypt the mes-
sage and simply drop it. This is the general idea behind Blacknet [118], an idea sug-
gested in the Cypherpunk community as a way to anonymously trade secrets, yet foil
traffic analysis, by broadcasting any given message to the entire world via Usenet
news, yet encrypt it only for its intended recipient(s).

This means that, in the general case, even one-to-one messages are broadcast. They
are propagated, as part of foiling traffic analysis, by all agents which deem the mes-
sage to be close enough to one of their existing clusters. Because actual message
being propagated is encrypted, it may only be read by a subset—possibly singular—
of the agents. This is clearly not as conservative of network resources as direct, point-
to-point connections, but it is far safer if widespread eavesdropping and traffic analy-
sis is considered to be a threat. If proper Mixmaster [10][23][66] dithering of the tim-
ing and size of transmissions is employed—by padding all messages to the same size,
sending garbage messages when there is nothing to send, and sending messages either
at totally random times or totally periodic times—it is possible that both sender and
receiver could be beyond suspicion, as in the definition in Section 3.2.2.

We will address further aspects of this mechanism, including its behavior against
active attackers and widespread traffic analysis, in Chapter 3.

2.11 ReputationsIt is expected that this architecture will be used for applications which handle per-
sonal data. Much of the strength of the privacy-protecting features of the architecture
(see Chapter 3) derives from the use of pseudonyms in place of real user identities.

Trolling and spoofingGiven this, how does any user know anything at all about another user of the system?
For example, in Yenta, how does a user know that the person on the other end of some
link is not his or her supervisor, romantic partner, or family member, trolling for inter-
ests that the user would rather not admit to? This is an example of the more general
problem of spoofing—some user pretending to be someone else.

In general, this is a difficult problem. We shall sketch out our overall approach to it
here, but many of the details must wait until Chapter 3 provides essential background
and algorithms.

The architecture we present attempts to solve this problem by using reputations. Users
may make any number of statements about themselves, called attestations, which are
cryptographically signed by other users via their agents. These attestations are associ-
ated with the user’s pseudonym—their Yenta-ID in Yenta, for example—and not their
real identity, which may be unknown even to the user’s own agent. It is beyond the
scope of this architectural description to specify exactly how these other users acquire
the trust to sign someone’s attestation—in many cases, such as inside an organization,
the users may be known to each other and therefore may sign each other’s attestations
on the basis of this shared knowledge. In other cases, such trust may come from long
association and interactions through the application.

The web of trustWhen two agents communicate, they may trade attestations. A user attempting to ver-
ify an attestation, whom we will call the verifier, must examine the signatures associ-
ated with the attestation, and must either convince himself that someone known to the
user is one of the signatories, or that one of the signatories themselves has been
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endorsed (via their signed attestation) by someone known to the verifier. The verifier
is therefore attempting to construct a chain of signatures which terminates at one or
more other users already known to the verifier. This tactic is exactly the same as is
used to verify the identity corresponding to PGP public keys [187], and is called a
web of trust. The details of how identities are handled, and the cryptographic algo-
rithms used to sign attestations, are deferred to Chapter 3.

Verifying attestations is a fundamentally peer-to-peer operation. There is no trusted
certifying authority, and no assumed hierarchy to the signatures being presented. How
many signatures, from whom, and the exact structure required of the signature chain
is completely up to the verifier’s discretion. The verifier’s policy may change depend-
ing on the use to which the information will be put—for example, in Yenta, a conver-
sation to some unknown other user about a noncontroversial topic may not require
any verification at all.

Word-of-mouth reputations Like the referral algorithm described in Section 2.8, this is a word-of-mouth
approach. It resembles the stereotype of small-town gossip and reputations, although
this analogy is not exact—in small towns, the gossip is usually about third parties,
whereas here the statements made are about the person who is making the statement. 

There is nothing preventing a single distinguished signer—some signer that is well-
known to a large fraction of users—from becoming established. This requires only
that all users know about this signer, and that they trust it. Such a scenario is likely in
an organization, which may have designated some individual to hold corporate cryp-
tographic keys or the like, and which can disseminate to all users, through some
mechanism not specified here, who the signer is and why the other users should trust
it. However, such a distinguished signer is outside the scope of this architectural
description; it is a local policy issue.

Any given user’s attestations are stored (and offered) by his or her own agent. This
must be so, because there is in general no distinguished location in the system to ask
about any other user’s reputation—the attestations come from the user himself.
Because the user owns his own attestations, it is likely that only positive attestations,
e.g., those that cast the user in a favorable light, will be offered. Verifiers thus walk a
fine line in their judgments about attestations: while excessively positive attestations
are unlikely to be signed by anyone trustworthy, negative attestations are unlikely to
exist at all.

Additional details about the cryptographic operation of attestations is provided in
Chapter 3. Yenta’s use of attestations is described in Chapter 4.

2.12 Running 
multiple agents on 
one host

The architecture presented here has a rather unusual problem, namely, how can multi-
ple users run the application simultaneously on the same host? At first glance, this
appears completely straightforward—isn’t it common that users on a timesharing host
can both run telnet at the same time, for example?—but there are wrinkles in this
architecture that make the straightforward solution inappropriate.

Typical client/server Applications which use IP networks to communicate identify the connection via a 4-
tuple of the local and remote host IP addresses and port numbers. In general, the host
IP address determines which computer is involved, and the port number determines
which program is involved, at each end of the link. Typical applications, such as tel-
net, depend on contacting a known port on the server end—for example, telnet uses
port 23. A daemon process that listens to that port then creates an appropriate server
which handles a client’s inbound connection.

Privileged daemons Unfortunately, this process requires that the daemon run as a privileged user under
most operating systems, since it must be able to create the server process as the
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appropriate user—otherwise, the server process could not access things that the user
himself could access. If the server process was FTP, for example, the user would be
unable to access his files unless everyone could.

Ephemerality of serversFurther, the server process that is created by this mechanism typically interacts only
with the host operating system—its files and so forth—but does not then open addi-
tional network connections. Finally, server processes tend to be ephemeral—when the
client network connection vanishes, so should the server.

We have different 
requirements

The architecture presented here is somewhat different. It is inconvenient to require
that users running Yenta, say, also arrange to have their administrator install a privi-
leged program in order to do so. Furthermore, such a privileged program would be
tempting source for attack. For example, if all traffic passed through the daemon, it is
potentially tappable at that point. And applications which use SSL to protect their
communications—as Yenta does, for example (see Section 4.8.1)—cannot tunnel
their encrypted data through the server, since the SSL architecture [63] does not per-
mit this.

The portmapperInstead, we run a port mapper service. The first copy of the application to be started
on any given host starts listening on the well-known-port—the WKP—for the applica-
tion. (In Yenta, for example, this is port 14990.) We shall call this copy of the applica-
tion the portmapper. The portmapper’s acquisition of the well-known-port prevents
any other program on the system from listening on that same port. The application
then forks; the other half of the fork then starts up as usual and runs the normal user
application.

Acquiring the well-known-
port; registering with the 
portmapper

Whenever any application starts up on the host, it attempts to acquire the WKP. If it
succeeds, it forks as above, and one half becomes the portmapper. If it fails, then it
knows that a portmapper is already running. In this case, the application scans the
available range of ports until it finds one that is unused, and acquires it; let us call this
port P. The application then registers with the portmapper—it gives the portmapper
its identity (in Yenta, its Yenta-ID—see section 3.4) and the port it acquired. The port-
mapper stores this value in an internal table.

Inbound connectionsAny inbound application attempts to connect on the well-known port. It specifies the
identity of the desired agent that it wishes to communicate with—as above, in Yenta,
this is the YID. The portmapper consults its internal table and tells the inquiring appli-
cation to reconnect on port P instead.

Handling crashesApplications try to reacquire the WKP at regular intervals. A success means that the
existing portmapper must have died; the application that reacquired the port forks and
becomes the new portmapper. Similarly, applications attempt to reregister with the
portmapper at regular intervals; this enables a newly-started portmapper to rebuild its
table.

Denial-of-serviceA portmapper which acquires the port and then refuses to serve any requests—or
which provides incorrect data for requests—is engaging in a denial-of-service attack;
as we specified in Section 2.3, this is explicitly not a part of our threat model. (Pre-
sumably, on a real timesharing host, other users of the application will list the sys-
tem’s processes, discover the true identity of the user running the malicious
portmapper, and will complain vigorously to the perpetrator.) 

Security preservedNote carefully how this approach fulfills the goals required of our architecture. The
portmapper contains no personal data—agent ID’s are public information. No per-
sonal data goes to any third-party process—the portmapper never sees the encrypted
data stream between any two applications. No privileged process is required, and
there is no single point at which security may be compromised. 
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2.13 Evaluation 
hooks

Our final topic of this chapter concerns monitoring the operation of the system. The
sample application described in Chapter 4 is a research prototype, and consequently it
is valuable to have the ability to collect information from it while it runs. Other appli-
cations might also benefit from the ability to observe their operation; such observation
can be invaluable for locating architectural or implementation bugs, for example.

In arranging such a monitoring capability, however, we must be careful not to undo
the privacy protections that the architecture tries so hard to put in place. The sketch
that follows details some of the steps involved, so as to complete our architectural
description. Details of how Yenta arranges to be monitored are presented in Chapter 4.

We assume that monitoring the running system can be accomplished by collecting
statistics, from each agent, which detail what actions that agent has taken recently,
whether or not it has detected any internal inconsistencies, and some information
about its internal databases. Exactly what this information consists of is, of course,
application-dependent.

A central receiver—a big 
problem?

In order to allow these statistics to be analyzed, they must be accumulated in a single
place—a central receiver of statistical data. This is an alarming suggestions to anyone
who has read Section 1.5: such a suggestion could potentially run afoul of all the
problem of trust expressed in that section.

The key is to arrange for anonymity of the collected data and confidentiality of its
transmission. We shall examine these in turn.

Anonymity In order for the data to be anonymous, there must not be anything in it that can be
related back to a particular user. We already assume that there is more than one user in
the system, from Section 2.2, which makes the most obvious attack—knowing that all
the data is from the system’s only user—infeasible. The particular application being
run must also take care to sanitize its data, by removing as many personally-identifi-
able details from the reported data as possible. For example, if the application handles
messages between users, and it is important to see some of the contents of these mes-
sages, the identities of the correspondents should not be transmitted. Preferably, the
messages themselves should not be reported—if what we care about is, say, the aver-
age message length, then only the length of the message should be reported in the first
place. This is analogous to the caution expressed in Section 1.5 about not collecting
anything which you are not willing to have be the subject of a subpoena.

The point of sanitizing the data is to eliminate the issue of having to trust the central
server. This means that the central server can leave the accumulated data in the clear,
on disks which might be the subject of an intrusion or subpoena, without compromis-
ing users’ privacy.

Unlinkability must be what 
we are protecting

It is very important that the sanitization process takes into account that some data is
dangerous regardless of whether it can be associated with a particular individual. For
example, data on how to build a nuclear bomb in one’s backyard, using components
from the corner hardware store, should presumably not be allowed to reside on the
central server even if it is not possible to connect it with any particular person—the
mere disclosure of the data itself, due to compromise of the server, could have disas-
trous consequences. Care is required of the application designer if data like this could
be present in the system.

Sanitizing the data is part of the solution. In many cases, however, one might wish to
analyze the behavior of particular agents over time. It must be possible to determine
unambiguously which agent is which, but it is presumably irrelevant exactly whose
agent is the one reporting a particular item. In other words, we care about distinguish-
ing agents from each other, but not in mapping them back to user identities.
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Random unique-ID’sThe solution to this problem is straightforward—have each agent assign itself a
unique identifier, not related in any way to anything else about the user (neither the
user’s identity, nor his characteristics), and report that unique identifier when sending
data to the central receiver. This identifier should not be the same as the identifier
which is a pseudonym for the user—or any other identifier at all—since the whole
point is to make statistical data collection unlinkable to actual users or their online
identities. For example, in Yenta, the ID we are discussing here is not the Yenta-ID.
This unique identifier can be simply any sufficiently-random collection of bits which
is long enough that accidental collisions (birthday paradoxes) are unlikely. For exam-
ple, in any reasonable application, 128 bits is perfectly sufficient.

If the data is sufficiently sanitized before transmission, and any identification infor-
mation is restricted to disambiguating multiple agents from each other, then the data
as collected at the central server is relatively safe. None of the threats mentioned in
Section 1.5 present an insurmountable problem, because the data cannot be related
back to anyone who could be harmed by its disclosure, and we are assuming that the
data collected is inherently safe if its source is unknown.

ConfidentialityThe remaining issue is confidentiality. It is insufficient to protect the data only once it
arrives at the server, since an eavesdropper may be present between any given agent
and the server. (Indeed, one of the best places such an eavesdropper could possibly be
is right at the server, since all application traffic destined for the server will pass that
point.) Such an eavesdropper could identify both the contents of the traffic and, for
instance, the IP address of its origin; this could lead to disclosure of the mapping
between any particular piece of data and the user who originated it.

To protect users against this threat, the data in transit to the central server must be
encrypted.

Unless the application logs at different intervals or at different lengths depending on
some confidential data, or unless the mere fact that a given user is running the applica-
tion at all is considered confidential, this is sufficient to defeat eavesdropping of the
contents of the transmission, and traffic analysis of the communication. 

Note that if merely whether or not someone is running the application is considered
confidential, we may use a modification of the broadcasting solution of Section 2.10
to help. Rather than having every agent log directly to the central server, it could ask
that its logging information be routed through n random other members of some clus-
ter(s) before final transmission. The intermediate hops need not (indeed, cannot)
decrypt the communication, and the central server (and any eavesdropper positioned
there) has no idea where the logging information truly originated. If we are using this
tactic, then the actual encrypted data should be encrypted with a public key whose
corresponding private key is known only to the central server, and not to any agent in
the system. Intermediate agents cannot then decrypt the data, and even an eavesdrop-
per at the server who possesses the server’s private key cannot, by the time the data is
received, know where it came from.

Central server is not a 
fundamental part of the 
architecture

It should again be emphasized that the rest of the architecture presented in this chapter
does not depend in any way on the existence of a central collector of statistical data.
Such a capability, while valuable for debugging or research, need not necessarily be in
any deployed application. Indeed, one can make arguments that a system which is not
the subject of research or debugging should not run such a server. It represents a
potential source of privacy violations for its users, and also represents a potentially
large source of inbound traffic for whatever network site hosts it.

Robustness vs loggingAlso, it should be pointed out that robustness issues imply that agents which wish to
log information to the central server should fail gracefully if the server is unavailable.
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They should potentially queue data for later delivery, but should not hang if the cen-
tral server is not always available, and should not maintain this queued data indefi-
nitely in any case, or their storage may grow without bound. This keeps the system as
a whole from freezing if the central server is temporarily or permanently taken offline,
and keeps storage on local agents from growing monotonically as well.

2.14 Summary In this chapter, we have examined the basic elements of the architecture. We have dis-
cussed what traits are shared by applications for which the architecture was designed,
and which problems we do not address. We have briefly described the sample applica-
tion which has been implemented to test the architecture, and extensively described
those elements of the architecture which support it, including how agents may cluster,
how the resulting groups may be used, the reputation system, and how evaluation data
may be safely collected.
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CHAPTER 3 Privacy and Security

3.1 IntroductionThis chapter addresses privacy and security concerns in the architecture we described
in Chapter 2. It assumes knowledge of the contents of that chapter, but not necessarily
in-depth knowledge of modern cryptography or computer security. 

We shall describe:

Section 3.2• The nature of the problem, including:

Section 3.2.1• The threat model, such as what attacks we expect, and the difference between
passive and active attackers

Section 3.2.2• A discussion of how private we are trying to be

Section 3.2.3• Some desiderata for security design in general, and how our architecture makes
use of them

Section 3.2.4• The problems we are not attempting to solve

Section 3.3• Some useful cryptographic techniques, including:

Section 3.3.1• Symmetric encryption

Section 3.3.2• Public-key encryption

Section 3.3.3• Cryptographic hashes

Section 3.3.4• Some issues in key distribution

Section 3.4• Some of the solutions we employ, including:

Section 3.4.1• How anonymity and pseudonymity help

Section 3.4.2• Various techniques against passive attackers

Section 3.4.3• Various techniques against active attackers

Section 3.4.4• Issues involved in protecting the distribution

Section 3.5• Selected additional topics which tie up some loose ends

3.2 The problemThis section discusses the types of attacks the architecture is likely to see, as well as
the problems we are not trying to solve.

3.2.1 The threat model: 
what attacks may we 
expect?

Given the architecture described in the previous chapter, there are a wide variety of
potential attacks which may be mounted by malicious or curious third parties. They
generally break down into passive attacks, in which communications are merely mon-
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itored, and active attacks, in which communications or the underlying agents them-
selves are subverted, via deletion, modification, or addition of data to the network.

Packet sniffing Passive attacks. The most obvious attack is simple monitoring of packet data; such
an attack is often accomplished with a packet sniffer, which simply records all packets
transmitted between any number of sources. If such data includes users’ mail mes-
sages or files, then two agents which are trading this information back and forth will
leak information to an eavesdropper.

Traffic analysis Even if the actual communications between agents are perfectly encrypted, however,
passive attacks can still be quite powerful. The easiest such attack, in the face of
encrypted communications, is traffic analysis, in which the eavesdropper monitors the
pattern of packet exchange between agents, even if the actual contents of the packets
are a mystery. This can be surprisingly effective: It was traffic analysis that alerted a
pizza delivery service local to the Pentagon—and thus the media—when the United
States was preparing a military action at the beginning of the Gulf War; when late-
night deliveries of pizza suddenly jumped, it became obvious that something was up
[181]. (Even though [179] points out that press coverage of the pizza effect tends to
quote unnamed sources, a very small number of individuals with personal stakes—
such as a Domino’s manager in the area—and other press reports, the continuing
press coverage [151] and even military recommendations [174] surrounding such
effects make it clear that this threat is taken seriously.)

Spoofing and replays Active attacks. Active attacks involve disrupting the communications paths between
agents, or attacking the underlying infrastructure. The most common such attack is a
spoofing attack, in which one agent impersonates another, or some outside attacker
injects packets into the communication system to simulate such an outcome. Often,
spoofing is accomplished via a replay attack, in which prior communications between
two agents are simply repeated by the outsider. Even if the plaintext of the encrypted
contents of the communication are not known, such attacks can succeed so long as
duplicate communications are allowed and the attacker can deduce the effect of such a
repeat. For instance, if it is noticed that a cash-dispensing machine will always dis-
pense money if a particular (encrypted) packet goes by, a simple replay can spoof the
machine into disgorging additional cash.

Subverted agents More sophisticated attacks are certainly possible. Individual running agents might be
subverted by a third party, such that they are no longer trustworthy. Such a subverted
agent might use encryption keys which are known to the interloper, for example.
Alternately, the attacker might create his or own own agent, which looks like a genu-
ine agent to the rest of the network, but pretends to have characteristics which match
everything—in Yenta, for example, such an agent might then be used to troll for peo-
ple interested in particular topics, and presumably also would be modified to disgorge
anything interesting to its creator.

Subverted distribution Finally, the actual distributed agent might be modified by a determined attacker at the
source itself—say, by subtly introducing a trojan horse into the application at its dis-
tribution point(s), either by modifying its source code, or by modifying any precom-
piled binaries which are being distributed. This is essentially a more-distributed and
more-damaging version of the subverted-agent attack above. As an example, consider
all the Web pages currently extant which proclaim, “These pages are best viewed with
Netscape x.y. Download a copy!” Now imagine what would happen if the link pointed
to a carefully-modified version of Netscape that always supplied the same session
key, known to the interloper: the result would be that anyone who took the bait would
be running a version of Netscape with no security whatsoever, hence leaving them-
selves vulnerable to, e.g., a sniffing attack on their credit card number.
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3.2.2 How private is 
private?

Consider the degrees of anonymity offered by the chart below: 

As defined in [141], the extremes of this chart range from absolute privacy, where the
attacker cannot perceive the presence of communication, to provably exposed, where
the attacker can prove the sender, receiver, or their relationship to others. The discus-
sion advanced in [141] is oriented more towards the perception of communication at
all, whereas we are concerned with the contents of that communication as well, but
the spectrum of possibilities is nonetheless useful. They define the rest of the chart as
follows:

• A sender is beyond suspicion if, though the attacker can see evidence of a sent mes-
sage, the sender appears no more likely to be the originator of that message than
any other potential sender in the system.

• A sender is probably innocent if, from the attacker’s point of view, the sender ap-
pears no more likely to be the originator than to not be the originator. This is weaker
than beyond suspicion in that the attacker may have reason to expect that the sender
is more likely to be responsible than any other potential sender, but it still appears
at least as likely that the sender is not responsible.

• A sender is possibly innocent if, from the attacker’s point of view, there is a non-
trivial probability that the real sender is someone else. While weaker than the
above, it may prevent attackers from acting on their suspicions.

• Finally, a sender is exposed if an attacker can see information which unambiguous-
ly identifies the sender. This is the default for almost all communications protocols
on the Internet—most such protocols are cleartext, and make no attempt to hide the
addresses of senders or receivers. This is weaker than being provably exposed,
however, since it is generally the identity of the computer that is revealed, rather
than some nonrepudiable user identity.

The architecture discussed here, for the most part, attempts to ensure either possible
innocence or probable innocence; we shall differentiate where useful. In addition,
certain parts of the architecture may make it possible for the user to be beyond suspi-
cion to a local eavesdropper—someone who can monitor some, but not all, communi-
cation links in the system.

3.2.3 Security design 
desiderata

The security architecture presented here is cognizant of several principles which are
well-known in the security and cryptographic communities. This section discusses
several of them, and demonstrates how they have motivated various decisions taken in
the design.

Design must be open—the 
importance of open source

Security through obscurity of design does not work. This means that any design which
depends upon secrecy of the design is guaranteed to fail, since secrets have a way of
getting out. Since this architecture is designed to be run by a large number of individ-
uals all across the Internet, its binaries must be public, hence security through obscu-
rity would be untenable anyway in the face of disassemblers and reverse-engineering.
(In fact, the source code of Yenta, the sample application, is also public, which should
increase confidence in the resulting system; see the discussion of Yvette in
Section 3.4.4.)

Figure 3: Degrees of anonymity
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Protect the keys Keys are the important entity to protect. In good cryptographic algorithms, it is the
keys that are the important data. Since keys are usually a small number of bits—hun-
dreds or perhaps thousands at most. Because new keys are often trivial to generate,
protecting keys is much easier than protecting algorithms. Unfortunately, however,
key management—keeping track of keys and keeping them from being accidentally
disclosed—is often the hardest and weakest point of a cryptosystem [6][15][24][34]
[69]. Our architecture has a variety of keys and manages them carefully.

Use existing crypto Good cryptography is hard to design and hard to verify. Most brand-new crypto-
graphic systems turn out to have serious flaws. Only when a system has been carefully
inspected by a number of people is it reasonable to trust it. This is another reason why
security through obscurity is a bad idea. We depend on well-established algorithms
and protocols for our fundamental security, since they have been carefully scrutinized.

Whole-system design Security is a function of the entire system, not individual pieces. This means that even
good cryptography and system design is worthless if it can be compromised by brib-
ing or threatening someone. Part of the reason for the decentralized nature of this
architecture is to avoid having a single point of compromise, as detailed in Chapter 1.

Poor design is dangerous 
too

Malevolence and poor design are sometimes indistinguishable. Many system failures
that look like the result of malevolence are instead the result of the interaction of an
accident and some unfortunate element of the design. For example, the entire ARPA-
net failed one Sunday morning in 1973 due to a double-bit error in a single IMP
[121]. A similarly disastrous outcome from a simple, single error is aptly described by
this quote: “The whole thing was an accident. No saboteur could have been so wildly
optimistic as to think he could destroy an airplane this way,” which described how an
aircraft was demolished on a friendly airfield during World War II when someone
ingeniously circumvented safety measures and inadvertently connected a mislabelled
hydrogen cylinder to the plane’s oxygen system [137].

Minimize collected 
information

If you don’t want to be subpoenaed for it, don’t collect it. As we mentioned in
Chapter 1, Federal Express, a delivery service in the United States, receives (and
hence is compelled to respond to) several hundred subpoenas a day for its shipping
records [178]. The safest way to protect private data collected from others from such
disclosure—not to mention the hassle of responding to a stream of subpoenas—is
never to collect it in the first place. Both the lending records of most libraries, and the
logfiles of MIT’s primary mailers—which are guaranteed to be thrown away irretriev-
ably when three days old [153]—adhere to this rule. This also motivates our decen-
tralized design: any central point is a subpoena target.

We can’t be perfect Security is a spectrum, not an absolute. A computer can often be made perfectly
secure by unplugging it—not to mention vaporizing its disks—and their backups.
However, this is a high price to pay. Tradeoffs between security and functionality or
performance are often necessary. It is also true that new attacks are constantly being
invented; hence, while this research aims at a more-secure implementation than that
which is possible without attending to these issues at all, we can never claim to be
completely secure. We therefore aim for security that is good enough, and to do not
harm—such that user privacy is protected as well or nearly as well as it would be if
the application was not running. We cannot hope for better—doing better would
imply that our application somehow magically improves the security of other, unre-
lated applications—and may have to make some tradeoffs that nonetheless lead to a
little bit of insecurity for a large benefit.
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3.2.4 Problems not 
addressed

There are a number of problems which are not addressed in the security architecture
presented here. The problems we are not addressing influence where we will and will
not accept design compromises.

No mobile codeFor instance, since each agent runs on a user’s individual workstation, and each agent
is not itself a mobile agent per se [29][35][70][170][183], we do not have the problem
of executing arbitrary chunks of possibly-untrusted code on the user’s local worksta-
tion.

No Byzantine failuresFurther, it is assumed that, while some agents may have been deliberately compro-
mised, the vast majority of them have not. This mostly frees us from having to worry
about the problems of Byzantine failure [53][131] in the system design, wherein a
large portion of the participants are either malfunctioning or actively malicious.

We also assume, as in the Byzantine case, that not every other agent any particular
agent communicates with is compromised. If this were not true, certain parts of the
algorithm would be vulnerable to a ubiquitous form of the man-in-the-middle attack,
wherein an interloper pretends to be A while talking to B, and B while talking to A,
with neither of them the wiser. (Weaker forms of this, wherein there are only a few
agents doing this, have reasonable solutions. In general, when dealing with Byzantine
failures, the amount of work to cope with increasing numbers of hostile peers goes up
quite rapidly—exponentially in many cases. This means that dealing with a small
number of miscreants is feasible, whereas the situation where most peers are untrust-
worthy becomes very difficult.)

Trusted path to binariesThe architecture provides no protection for the user if his or her copy of the applica-
tion has been compromised. It is generally trivial for a sophisticated attacker to com-
promise a binary—for example, by substituting NFS packets on the wire as the
application is loaded from the fileserver. We cannot be of any help in this case; a user
without a trusted path to his or her binaries is already at the mercy of any good
attacker, regardless of the application being run.

Cracked rootAlong the same lines, a user who runs the application on untrusted hardware cannot
expect that it can never be compromised—this is analogous to not having a trusted
path to one’s binaries, since an attacker who has compromised the computer on which
the application is being run can by definition either read or alter data in the running
binary. Consider the example of Yenta, which runs as a daemon and remains resident
in memory indefinitely. The user’s secret key, which is the basis of his or her identity,
must similarly remain in memory for long periods of time. If this were not the case,
then the user would have to constantly type his or her passphrase for every operation
which required an identity check, of which there are many. But this also means that
any attacker who has root access to the user’s workstation, for example, can read this
key out of the process address space. Hence, if the user’s workstation has poor secu-
rity in general, then Yenta’s ability to keep the user’s secrets from the attacker will be
no better.

Poor passphrasesWhile this architecture tries to minimize the number of places where users can inad-
vertently compromise their own security, some user responsibility is nonetheless
expected. For example, the agent must store its permanent state somewhere. If this
data is to be private, it must be protected. Absent hardware solutions, the most reason-
able solution to this protection is to encrypt it with a passphrase—but nothing can
help us if the user chooses a poor passphrase, such as one that is too short or is easily
guessed.

Government agencies or 
rubber-hose cryptanalysis

Similarly, this architecture is no protection against the resources of a government
agency, or some similarly-equipped adversary. Such an adversary has no reason to
attempt a subtle compromise of the distribution, the protocols, or the cryptography. It
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may instead physically bug the user’s premises, compromise his hardware, or use rub-
ber-hose cryptography—coercing the user’s key(s) via implied or explicit threat of
physical force. A possible solution to coercion is the use of deniable filesystems [22],
but this is beyond the scope of the research presented here.

No denial-of-service In addition, we do not explicitly deal with denial-of-service attacks, which are
extremely difficult for any distributed system to address. Such attacks amount to, for
example, dropping every packet between two agents which are trying to communi-
cate—this attack looks like the network has been partitioned to the agents involved,
and there is little defense.

No international export Finally, we have the problem of our use of strong cryptography to protect users’ pri-
vacy. The United States government currently regulates such cryptographic software
as a munition, under EAR, the Export Administration Regulations [50]—formerly
ITAR, the International Treaty On Arms Regulations [87]. This means, for example,
that the cryptographic portions of Yenta’s software are currently unavailable outside
the US unless added back in elsewhere. Solving the limitations of EAR/ITAR is not
explicitly addressed here—except to demonstrate how such governmental policies
work against the sovereign rights of its citizens, as we detail in Chapter 1.

3.3 Cryptographic 
techniques

This section introduces some useful cryptographic techniques that will be used later.
The techniques we discuss are used as black boxes, without proof that they properly
implement the functionality described for the box and without the mathematical back-
ground which underlies them; those who wish to check these assertions may examine
the citations where appropriate. In particular, for a much more complete introduction
that includes an excellent survey of the field, see [155].

3.3.1 Symmetric 
encryption

One of the most straightforward cryptographic techniques uses symmetric keys. Algo-
rithms such as IDEA ([155] pp. 319-324) work this way. Given a 128-bit key, the
algorithm takes plaintext and converts it to ciphertext. Given the same key, it also con-
verts ciphertext back into plaintext. Expressed mathematically, we can say that
C=K(P) [the ciphertext C is computed from the plaintext P via a function of the key
K], and similarly P=K(C) [the reverse also works].

IDEA is probably very secure. The problem comes in distributing the keys: we cannot
just transmit the keys before the encrypted message—after all, the channel is deemed
insecure or we wouldn’t need encryption in the first place—hence users must first
meet out-of-band, e.g., not using the insecure channel, to exchange keys. This is
infeasible for a large variety of applications.

3.3.2 Public-key 
encryption

A better approach uses a public-key cryptosystem [PKC], such as RSA ([155] pp. 466-
473) or the many other variants of this technology. In a public key system, each user
has two keys: a public key and a private key, which must be generated together—nei-
ther is useful without the other. As its name implies, each user’s public key really is
public—it can be published in the newspaper. The private key, on the other hand, is
never shared, not even with someone the user wishes to communicate with.

Confidentiality User A encrypts a message to B by computing C=KPB(P), e.g., a function involving
B’s public key. To decrypt, B computes P=KSB(C), e.g., B’s private key. Note that,
once encrypted, A cannot decrypt the resulting message, using any key A has access
to—the encryption acts one-way if A does not have B’s private key—and she
shouldn’t! [One important detail: since PKC’s are usually slow, one usually creates a
brand-new session key, transmits that using PKC, then uses the session key with a
symmetric cipher such as IDEA or triple-DES to transmit the actual message. In addi-
tion, PKC’s may sometimes leak bits if used to encrypt large amounts of data;
encrypting only keys can avoid this problem.]
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AuthenticityThis scheme provides not only confidentiality—third parties cannot read the mes-
sages—but also authenticity—B can prove that A sent the message. How does this
work? Before A sends a message, she first signs the message by encrypting it (really a
cryptographic hash of the message—see below) with her own private key. In other
words, A computes Psigned= KSA(P). Then, A encrypts the message to B, computing
C=KPB(Psigned). B, upon receiving the message, computes Psigned=KSB(C), which
recovers the plaintext, and can then verify A’s signature by computing P=KPA(Psigned).
B can do this, because he is using A’s public key to make the computation; on the
other hand, for this to have worked at all, A must have sent it, because only her private
key could have signed the message such that her public key worked to check it. Only
if someone had cracked or stolen A’s private key could the signature have been fraud-
ulently created.

3.3.3 Cryptographic 
hashes

It is often the case that one merely wishes to know whether some message has been
tampered with. One obvious solution is to transmit the message out of band—via
some channel which is not the same as the channel originally used to transmit the
message. But this begs the question of how that channel is secured, and can be very
inconvenient to implement in any case. 

An easy way to avoid out-of-band transmission is via a cryptographic hash, such as
MD5 ([155], pp. 436-441) or the Secure Hash Algorithm (SHA, [155], pp. 442-445).
These hash functions compute a short (128-bit or 160-bit, respectively) message
digest of an unlimited-length original message. These functions have the unusual
property that changing any single bit of the original message changes, on average,
half of the bits of the digest. Further, they function in a one-way fashion—it is infeasi-
ble, given a digest, to compute a message which, when hashed, would yield the given
digest. 

On the other hand, anyone can compute the hash of a message, since the algorithm is
public and uses no keys. This means that it is computationally easy to verify that a
particular message does, in fact, hash to a particular value, even though it is infeasible
to find a message which produces some particular hash.

Digital signaturesSince such hashes are compact yet give an unambiguous indication of whether the
original message has been altered, they are often used to implement digital signatures
such as in the RSA scheme above—what is signed is not the actual cleartext message,
but a hash of it. This also improves the speed of signing (since signing a 128- or 160-
bit hash is much faster than signing a long message), and the actual security of the
cipher as well (because RSA is vulnerable to a chosen-plaintext attack; see [155], p.
471).

3.3.4 Key distributionOne of the hardest problems of most cryptosystems, even public-key systems, is cor-
rectly distributing and managing keys. In a public-key system, the obvious attacks—
compromise of the actual private key—are often relatively easy to guard against: keep
the private key in memory as little as possible, encrypt it on disk using DES with a
passphrase typed in by the user to unlock it [187], and keep it offline on a floppy if
possible.

But consider this: Alice wishes to send a message to Bob. She looks up Bob’s public
key, but interloper Mallot intercedes and supplies his own public key. Alice has no
way of knowing that Mallot has done so, but the result of her encryption is a message
that only Mallot, and not Bob, can read! Even if one demands that Alice and Bob have
a round-trip conversation to prove that they can communicate, Mallot could be play-
ing man-in-the-middle, simultaneously decrypting and re-encrypting in both direc-
tions as appropriate.
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Webs of trust To solve this problem, systems such as Privacy Enhanced Mail [92] use a centralized,
tree-structured key registry, which is inconsistent with our decentralized, no-hierarchy
architecture. On the other hand, PGP [187] functions with completely decentralized
keys, by having users sign each other’s keys—this is the same mechanism used in the
attestation system described in Section 2.11. When Alice gets “Bob’s” public key, she
checks its signatures to see if someone she trusts has signed that key, or some short
chain of trustable people, etc. If so, then this key must be genuine (or there is a con-
spiracy afoot amongst their mutual friends); if not, then the key may be a forgery. This
practice of signing the keys of those you vouch for is called the PGP web of trust and
is the primary safeguard against forged keys. Yenta, for example, uses this technique
in signing attestations as part of its reputation system.

3.4 Structure of the 
solutions

This section presents solutions to some likely security problems in our architecture,
using some of the technology mentioned previously. It presents a range of solutions;
not every user in every application might want the overhead of the most complete pro-
tection, and the elements, while often solving separate problems, sometimes also act
synergistically to improve the situation. Finally, for brevity, it omits some details
present in the complete design.

3.4.1 The nature of 
identity

Uniqueness and confidentiality. It should not be possible to easily spoof the identity
of an agent. For this reason, every agent sports a unique cryptographic identity—a
digital pseudonym. This identity corresponds, essentially, to the key fingerprint [187]
of the individual agent’s public key—a short (128 bits) cryptographic hash of the
entire key. In Yenta, this identity is referred to as the user’s Yenta-ID or YID, and is
effectively a random number—knowing it does not tell anyone anything about whose
real-life identity it is. In order to keep some interloper from stealing, say, agent A’s
pseudonym, any agent communicating with A encrypts messages using A’s public
key. A can prove that its pseudonym is genuine by being able to decrypt; further, such
communications are interlocked [155] and have an internal sequence number—itself
encrypted—both of which help prevent replay attacks by a man in the middle. Fur-
ther, of course, such encryption prevents an eavesdropper from intercepting the actual
conversation. Thus, even though the actual identity of the user is not known, the user’s
pseudonym cannot be appropriated.

Pseudonymity and 
anonymity are corner-
stones of the design

The fact that users are by default pseudonymous, and often completely anonymous, is
a critical aspect of the security of the architecture. Consider, for example, what would
happen if characteristics that were offered during clustering (Section 2.8.2) automati-
cally identified the user identity that went along with them—the user would be
exposed, in the terminology of Section 3.2.2. Instead, given the plausible deniability
feature described in Section 2.8.2, it is at least possible that any given characteristic
does not correspond to the agent offering it, meaning that the user is probably, and at
least possibly, innocent. In addition, if third-party subcomparisons and random-refor-
warding via cluster broadcasts, also as described in Section 2.8.2, are in use, the user
may well be beyond suspicion.

The completely decentralized nature of our architecture complicates key distribution.
The model adopted is the decentralized model used by PGP [187]. By not relying on a
central registry, we eliminate that particular class of failures. And interestingly, the
architecture partially eliminates the disadvantage of PGP’s decentralized key distribu-
tion—that of guaranteeing that any particular public key really does correspond to the
individual for which it is claimed. In PGP, we care strongly about actual individuals,
but in our architecture, and in the sample application, only the cryptographic ID’s are
important—for example, Yenta tries to hide the true identity of its users unless they
arrange to be known to each other.
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Spamming and spoofing. Unfortunately, this pseudonymity comes at a price: For
example, if we are about to be introduced to some user, how can we have any idea
who we might be about to be introduced to? Can we know that the last 10 agents
we’ve seen do not all surreptitiously belong the same individual? Can a given user of
Yenta, for instance, know that this person won’t spam us with junk mail once he dis-
covers our interest in a particular topic? And so forth.

We solve this problem with the attestation system, described in Section 2.11. This
system provides a set of reputations, which are useful in verifying, if not the identity
of a given user, at least whether he or she can make statements about himself or her-
self that other users will vouch for.

3.4.2 EavesdroppingThe generally-encrypted nature of inter-agent communication makes most eavesdrop-
ping, including some but not all man-in-the-middle attacks, quite difficult. However,
traffic analysis is still a possibility—for example, if an interloper knows what one
Yenta is interested in, watching who it clusters with could be useful.

Fortunately, we have a solution to this, in the broadcasting paradigm mentioned in
Section 2.10. In addition, we can use the techniques in Section 3.4.3 to provide addi-
tional security.

3.4.3 Malicious agentsIf some malicious person was running a subverted version of an agent, what could he
discover? The most important information consists of the identities of other agents in
the cluster cache—especially if those identities can be those of real users, e.g., their
real names, and not digital pseudonyms—and the contents in the rumor cache—espe-
cially if, again, such text can be correlated to real people. There are therefore two gen-
eral strategies to combat this: hiding real identifying information as well as possible,
and minimizing the amount of text stored in the rumor cache. We shall mention two of
the simplest approaches below; other approaches to both problems, involving Mix-
master-style random-reforwarding, secret-sharing protocols, or diffusing pieces of
characteristics out to large numbers of third parties for comparison, are possible but
are more complicated than necessary for this discussion.

Hiding identitiesSince users are pseudonymous by default, hiding their identities in large part centers
around avoiding traffic analysis. Using the broadcasting strategies presented above
suffices. For a more complete description, please see Section 2.10.

Mixing in other agents’ 
data

A simple technique for protecting users’ characteristics against possibly malicious
agents is to mix in other agents’ data when engaging in the comparison and referral
process. For a more complete description of this process, please see Section 2.8.3.

A range of privacy is 
available

Depending on which of the strategies above are chosen, and the nature of the charac-
teristics handled by the application, it may be possible to arrange several degrees of
user privacy. Using the terminology of Section 3.2.2, these could plausibly range from
possible innocence to beyond suspicion.

3.4.4 Protecting the 
distribution

There is a final piece of the puzzle—how do users of an agent know that their copy is
trustworthy? The easiest approach, of course, is to cryptographically sign the binaries,
such that any given binary may be checked for tampering with the authoritative distri-
bution point. But what if the program itself, at the distribution point, had a trojan
horse inserted into its source, either by the implementors themselves, or by a mali-
cious third party who penetrates the development machine? Even though the source is
freely distributed, and may be recompiled by end-users and checked against the
binary, what individual user would want to read the entire source to check for mali-
cious inclusions? This is, of course, a problem for any software, and not just agents in
the architecture we present here—but applications such as Yenta are particularly diffi-
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cult for a user to verify solely from their behavior. After all, they read sensitive files
and engage in a lot of network traffic—and even worse, the traffic is encrypted, so one
cannot even check up on it with a packet sniffer.

In general, those who distribute software have chosen one of three models:

• Trust us. Often used by those who do not provide source code at all.

• Go ahead—read every line of the source code yourself. This is an infeasible task
for almost any reasonable application, and a huge burden.

• Hope you hear something one way or the other on the net or in the press. This, too,
is both infeasible, error-prone, and subject to a variety of false positives and false
negatives.

The Yenta code vetter There is another way. To demonstrate this, we have developed Yvette, a Web-based
tool which allows multiple people to collaboratively evaluate an agent’s source
code—in this case, Yenta’s. A summary of Yvette’s capabilities is presented below,
and examples of its use are presented in Figure 4 and Figure 5.

Evaluators store cryptographically-signed—hence traceable and non-spoofable—
comments on particular pieces of the source where others can view them. The signa-
ture covers both the comment and the exact text of the code being commented upon.
Each individual need only check a small piece of the whole, yet anyone can examine
the collected comments and decide whether their contents and coverage add up to an
evaluation one can trust.

Yvette presents an interface, via the Web, which allows anyone to ask questions such
as:

• Who has commented on this particular piece of code? Are the comments mostly fa-
vorable, or not? What is the exact text of the comment(s)?

• What regions have the most or least number of comments associated with them?

Yvette users may also take actions such as:

• Download, for inspection and comment, a piece of the source, which can be a re-
gion of lines in a file, a subroutine, a set of subroutines, a set of files, or an entire
directory tree.

• Upload cryptographically-signed comments about some piece of downloaded
source code.

Note that, since it distributes code that may include cryptographic routines whose
export from the US and Canada is illegal [50][87], Yvette must also be aware of
which sections of code are sensitive and must use address-based heuristics and ques-
tions of the user—only for those parts of Yenta which are cryptographic—to ensure
that EAR/ITAR’s export restrictions [50][87] are not violated. The heuristics used are
the same as those used to control the export of PGP [187], which, while easy to cir-
cumvent, are informally viewed as sufficient by at least some of the relevant players
in the US government [104].

Using Yvette, therefore, users who wish to help verify a distribution can bite off a
small piece of the problem, asking the Yvette server for which pieces of source code
have not yet been extensively vetted, perusing other people’s comments, and so forth.
Users with no programming experience, but who nonetheless wish to check the distri-
bution, may look at everyone else’s comments to assure themselves of the integrity of
the product.
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Yvette thus attempts to encourage a whole-system approach to security, in which not
only are the agents themselves secure, but their users—who are also part of the sys-
tem—may easily trust the agents’ security and integrity. It is hoped that mechanisms
such as Yvette will become more popular in software distribution in general, and that
it encourages thinking about more than just protocols and cryptography—if we expect
widespread adoption of sophisticated agents, the sociology of how users can use and
trust them matters, too.

3.5 Selected 
additional topics

There are a few loose ends in the architecture we present here that have not been ade-
quately addressed by the discussion so far. This section attempts to tie them up.

Central serversLet us consider first the central servers that exist in the design, namely the bootserver
(described in Section 2.7) and the statserver (described in Section 2.13). Both of
these servers are safe, in the sense of the unlinkability of users’ personal data and
their actual identities, but in slightly different ways.

The bootserver knows IP addresses. Because of this, it could potentially lead an
attacker directly back to an individual. However, the bootserver knows nothing else—
in particular, it knows nothing about any user’s characteristics, save that the given
user runs the application at all.

The statserver, on the other hand, potentially knows quite a bit about all users—in
Yenta, for example, it knows information such as how many clusters the user is in,
how they tend to use the user interface, what machine architecture Yenta is being run
on, and so forth. (Note that it still does not know the detailed contents of individual
characteristics, because such information could compromise a user’s privacy if
revealed, and it is unlikely to be so useful for analysis of Yenta’s behavior that the risk
is worthwhile.) However, the statserver does not know user identities or IP addresses
at all. Once the data has been stored on disk, the agent’s identity and IP address are
gone. The only data that the statserver has preserved is a unique random number
which can be used to differentiate one agent from another, but nothing else.

Encrypted connectionsAs for the safety of the data getting to the statserver in the first place, or between any
given pair of agents, note that we have specified that all communications are routinely
encrypted. The only exception is in data which contains no personal user data, namely
bootstrap requests and replies, either via broadcast or to and from the bootserver. For
details of how Yenta performs such encryption, see Section 4.8.1.

Persistent stateGetting the data between agents is only part of the story, however; we must also con-
sider the storage of the agent’s persistent state across shutdowns. In most applications,
this is likely to stored be in a filesystem on a disk. If the agent handles personal infor-
mation, this storage point is a tempting target for an attacker. Furthermore, it is likely
that the application may store users’ private keys—perhaps the basis of their iden-
tity—in this file as well, meaning that an attacker who can read the file can not only
violate the user’s privacy, but impersonate him or her to other users as well, with
potentially serious implications.

It is clear, therefore, that such data should be protected. Exactly how this is to be
accomplished is application- and implementation-specific; how Yenta does so is
described in Section 4.8.2. Note in particular that this is a rich source of possible
security problems, for several reasons:

• A network connection is necessarily a moving target—if an eavesdropper fails to
intercept the relevant packets, the attack fails. On the other hand, data stored on
disk is vulnerable to compromise from the moment it is created until long after-
wards—perhaps even after it is thought deleted, and, to a sophisticated adversary,
even after the disk has been formatted [73]. Keeping backups around forever, and
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failing to adequately encrypt their contents or control physical access to them, only
makes this worse.

• If the data is stored encrypted, we have the often-difficult problem of how to se-
curely ask the user for the decryption key. Many environments provide no known-
secure method of eliciting such data; in particular, UNIX users who use the X Win-
dow System [152] or Telnet [136] are particularly vulnerable to simple packet sniff-
ing, and this is an extremely popular attack. While it is possible for knowledgeable
users to use SSH [158] or Kerberos’ ktelnet [127], there is often no way for the ap-
plication to ensure this—and the consequences of a single instance of carelessness
could lead to the user’s privacy being unknowingly compromised forever after-
wards.

• Encrypting the data with the same encryption key every time it is written to disk
exposes it to a number of attacks if the data varies [155].

Random numbers Finally, note that we have at many points mentioned the term random number—
whether explicitly, in Section 2.13’s discussion of the ID’s generated for statserver, or
implicitly, whenever we talk about generating any sort of key—session keys, public/
private key pairs, and so forth. We assume here that such random numbers are really
pseudorandom, e.g., derived from deterministic software.

Where are these random numbers coming from? Certainly not from typical applica-
tion libraries; most random number sources provided with most operating systems are
extremely poor when employed for cryptographic applications. Further, several high-
profile examples of poor decisions in sources of random numbers have come to light,
such as an early Netscape attempt at SSL [63] which derived its “random” numbers
from easily-predictable values provided by the host operating system—this meant that
a browser’s supposedly-secure, 128-bit-key connection to a server could be broken in
around 25 seconds [67].

Thus, the implementor must take great care in selection and use of random numbers
in the application. This is common sense in cryptographic circles, but it bears repeat-
ing here. Exactly where to find a good source of randomness is always implementa-
tion-specific; some operating systems make available random numbers which are
derived from turbulent processes (such as disk head performance), but many do not.

For an illustrative example of how Yenta acquires, manages, and uses random num-
bers, see Section 4.8.3.

3.6 Summary In this chapter, we have described the threat model—what sorts of attacks we consider
within the scope of this research. We then presented some background on modern
cryptography and how it can help address many of the threats presented; we also dis-
cussed how decentralization of the architecture contributes greatly to the protection
we afford. Finally, we presented a new method which makes collaboratively evaluat-
ing the source code of a critical application easier, and tied up some loose ends.
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Figure 4: Showing the user how to submit an evaluation.

Figure 5: A typical evaluation. The small bars on the left of each source line are color-coded.
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CHAPTER 4 The Sample Application: Yenta

4.1 IntroductionThis chapter describes the sample application, named Yenta, that has been developed
as a part of this research. The prior chapters are essential background for this discus-
sion. Chapter 5 will evaluate the architecture and this sample application.

In this chapter, we shall describe:

Section 4.2• The purpose of the application—what problem does Yenta solve?

Section 4.3• Some sample scenarios—why might Yenta be useful?

Section 4.4• Yenta’s affordances—what can users do with it?

Section 4.5• Political considerations—why this application in particular?

We shall then turn our attention to details of Yenta’s implementation, and address:

Section 4.6• Yenta’s implementation languages and internal organization

Section 4.7• How Yenta determines its user’s interests

Section 4.8• How Yenta’s security works

4.2 Yenta’s purposeYenta has two primary purposes

Matchmaking• To serve as a distributed matchmaking system that can introduce users to each oth-
er, or form coalitions and discussion groups into which users may send messages
to groups of others who share their interests (see Section 4.4).

Getting the word out• To raise public awareness for the political ideas about trustworthiness and protec-
tion of personal privacy advanced elsewhere in this thesis (see Chapter 1 and
Section 4.5).

4.3 Sample scenariosBefore we examine exactly what Yenta can do, let us consider some sample scenarios.

You write software, and you’ve having trouble with a particular tool. Somebody
else just down the hall is using the same tool as part of what they’re doing. But
even though both of you talk every day, neither of you knows this—after all, this
tool is just a little part of your job, and you don’t tell everybody you meet about
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every single thing you do all day. Yenta can tell you about this shared interest.

You’re a technical recruiter. You’d like to find companies looking for people to
hire, and people who are looking to be hired for your existing clients. They need
privacy and anonymity, so the people they’re working for now don’t know they’re
looking. You need to be able to show them a good reputation, backed up by satis-
fied clients. Yenta is private and secure, and has a reputation system. Everybody’s
happy.

You’re a doctor doing some research on an rare condition. Another doctor is
doing the same sorts of research, but you don’t know about each other. Maybe
you’re an academic, but you don’t have enough to publish yet. Or perhaps you’re
a clinician, and don’t realize that you’re looking at a small part of a much bigger
public-health problem. Yenta can help bring the two of you together, along with
others who are studying the same problem.

You have an unusual interest, but you can’t find anyone else who seems to
share it. Maybe it’s something embarrassing, that most people don’t want to talk
about publicly, so doing a web search hasn’t turned up much. Yenta can help find
others who share the interest, even if they don’t publish about it. And it can keep
the interest private, to only those who trust each other.

What do these scenarios all have in common? Users who may or may not know each
other, but who do not know that they share an interest in something. Also, some of
them depend on the existence of the reputation system, or upon the pseudonymous
nature of how Yenta users are identified to each other.

4.4 Affordances Let us now turn to Yenta’s affordances, meaning exactly what functionality is made
available to its users. This description is mostly from a user’s standpoint—here, we
describe more about what the user finds available in Yenta’s set of possible actions,
and less about how Yenta manages to do them.

4.4.1 User interface Yenta communicates with its user by sending HTML to a particular network port, and
instructing its user to connect to that port with a web browser. With the exception of
the very first message from Yenta, in which it tells the user what URL to use, Yenta
uses the user’s web browser exclusively for its interactions. This has several major
advantages:

Portability • Supporting a graphical user interface is a tremendous amount of work, and is gen-
erally extremely non-portable across different types of computers. HTML, howev-
er, is extremely portable, provided that a lowest-common-denominator subset—es-
sentially, that which has been approved by various standards bodies—is used.
There are web browsers available for virtually all general-purpose computers in the
world.

Familiarity • By using HTML, Yenta can present its interface using a paradigm already well-
known by millions of potential users. 

Configurability • If the user disagrees with some aspects of the UI—in issues such as font size,
screen background, and so forth—it is generally possible to use the browser to
change these, without having to support it directly in Yenta.

Security • Yenta requires a high-security path from the user to Yenta itself, so that the user
may type his or her passphrase without inordinate chance of it being eavesdropped.
Common browsers support high-strength (128-bit session key) SSL connections,
and Yenta uses cryptography exclusively when communicating with its user. We
will have more to say about this in Section 4.8.

4.4.2 Yenta runs forever Once Yenta has been started, it effectively runs forever. It disconnects from the con-
trolling shell, and becomes a background process. While the user can manually shut
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down Yenta from its user interface, this is discouraged, since it prevents other Yentas
from communicating with the user’s Yenta when the user is not attending it. This, in
turn, means that Yenta will not perform as well as it could—it will miss opportunities
for clustering and for passing or receiving messages. (Future versions of Yenta may
not require permanent network connections, and will be more suitable from intermit-
tently-connected machines, such as the dial-up connections employed by most home
computer users.)

CheckpointingYenta checkpoints its state to disk periodically, and when it is shut down. This means
that a machine crash can only lose a small amount of data; how often these snapshots
occur, and thus the maximum amount of unsaved state that might exist, is config-
urable. For details about how this data is saved, and what precautions are taken to
ensure both robustness and privacy, see Section 4.8.

4.4.3 HandlesUsers of Yenta are identified by two types of names. The Yenta-ID was described in
Section 3.4.1, and is essentially a 160-bit random number. This number is the funda-
mental way in which Yentas identify themselves to each other, and is both unspoofa-
ble and unique, as described previously. 

YID’s are precise, but 
cumbersome

A Yenta-ID is an unfriendly way to name entities which people must interact with—
people are notoriously bad at remembering random 160-bit strings; they are very dif-
ficult to type; and they are more unique than is required almost all of the time. Fur-
thermore, users generally prefer some degree of personalization of their online
identities, and being able to choose their own name is a fundamental aspect of this.

Handles are nicknames 
chosen by users

Hence, Yenta also makes available a handle, which each user may set as he or she
pleases. Handles are not guaranteed to be unique across any particular set of Yentas—
indeed, since it is assumed that no Yenta knows of all other Yentas in the world, this
seems impossible on its face. Handles provide a convenient shorthand when a user
must refer to a particular other Yenta, and offer some degree of a chosen identity.

Local nicknames for 
others

Because handles are not guaranteed unique, users may also examine the Yenta-ID for
a particular Yenta they communicate with, to avoid ambiguity. In addition, Yenta sup-
ports the ability to make local nicknames for any other Yenta’s handle. This means
that, if the user Sally is talking to some other user whose handle is Joe, but finds that
she does not want to use that handle—either because she already knows two Joes, or
because she simply doesn’t like the name—she may instruct her Yenta to refer to the
Yenta known elsewhere as Joe by some other name, such as Fred. This causes no con-
fusion to other Yentas, which only refer to each other by YID anyway, and is invisible
to everyone but Sally, unless she happens to mention her local, private nickname for
Joe to anyone else.

4.4.4 Determining user 
interests

When Yenta first starts up, and periodically afterwards, it determines what the user is
actually interested in. Without this determination, Yenta is useless—it would have no
basis for which clusters to join, what introductions to make, and so forth.

DocumentsYenta uses a collection of documents to determine what a user is interested in. A sin-
gle document is generally either a single file—if the file consists of plain text—or a
single email message—if the file consists of several email messages grouped into a
single file, as is popular with many mail-handling tools. Yenta can automatically
determine, by analyzing the contents of the file, what sort of file it is, and whether it
consists of a single document or several. The internal representation of a document is
described in Section 4.7.

Scanning a treeWhen Yenta starts up for the very first time, it asks the user for the root of a file tree. It
then walks every file in that tree, rejecting those that appear to be binary files, and also
rejecting portions of those files that appear uninteresting—email signature lines, the
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stereotyped wording of header fields in email, HTML tags, PGP signatures, and so
forth. It then clusters the resulting documents, as described in Section 4.7.

Single files Once this initial clustering has taken place, users also have the option of directing
Yenta’s attention to a particular single file. This single file can be used to express a
particular interest, perhaps obtained by the user importing a single document from
elsewhere, and telling Yenta to give it disproportionate weight. In part, this makes it
somewhat easier for users to express an interest in a particular subject so that they
may find a group of experts.

Rescanning periodically In addition, Yenta can be told to periodically resurvey the files it has already scanned.
This allows it to pick up new interests as files are modified—files of email are typical
for this. Interests from documents (entire files, or particular email messages) which
are older than a user-settable threshold can be dropped, so that if the user loses inter-
est in a topic, Yenta will stop trying to cluster based on it.

Giving Yenta feedback Once Yenta has determined the user’s interests, and at any time afterward that the user
chooses, the user can survey the listing of accumulated interests and tell Yenta which
ones are actually useful, and which ones are not. This has two important advantages.
First, interests which were incorrectly determined by Yenta—such as a set of docu-
ments which contain some stereotyped text in each one, and which hence were clus-
tered together—can be rejected. Second, not everything Yenta might find is equally
important to the user. A common example is that of meetings: Most users working in
white-collar environments in which meetings are scheduled by email will end up with
a cluster containing words from messages such as room, date, time, schedule, meet-
ing, and so on. For most people, just because someone else has meetings—on any
topic—is no reason to suggest an introduction.

An example from Yenta’s user interface of a set of interests is presented in Figure 6.

4.4.5 Messaging Once Yenta has determined its user’s interests, it engages in the clustering algorithm
described in Chapter 2 to find other Yentas which share one or more of its user’s inter-
ests. As soon as Yenta finds itself some clusters of others, it allows the user to send
messages. These messages may be of two types:

• One-to-one. In this case, the user sends a message to a single other Yenta, which
receives it and (usually) displays it to its user.

• One-to-cluster. In this case, the user sends a message to all the other Yentas in one
of the clusters of which this Yenta is a member.

Examples from the Yenta UI may be found in Figure 7, Figure 8, and Figure 9. The
implementation of how message-passing works is described in Chapter 2.

Grouping and filtering Yenta users may group their messages by who has sent them, when they arrived, and
so forth; the functionality resembles that of a typical mail-reading program. In addi-
tion, they may establish filters, which control which messages from other Yentas will
be shown. These filters can screen out messages which do (or do not) contain certain
regular expressions in their contents. In addition, rules can be written which use the
attestation system (see below) to determine whether or not to present a message based
on the reputation of its sender. This allows users to avoid seeing spam without ever
seeing even the very first message from the sender—by instructing Yenta to ignore
messages which do not meet some reputation criteria, spammers who fail to acquire a
good-enough reputation become invisible to the given user. Of course, care must be
taken in writing such rules, lest most other people be inadvertently lumped into the
group of potential spammers.
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4.4.6 IntroductionsIf one user’s Yenta determines that some other Yenta seems unusually close in inter-
ests to one of its users clusters—better the characteristics match within a user-settable
threshold—it can suggest an introduction. This suggestion takes the form of an auto-
matically-generated message to both Yentas. The Yenta suggesting the introduction
sends a message to the other Yenta saying, in effect, I think we should be introduced,
and also, in effect, sends its user a message saying, I think you should introduce your-
self to this other user. Users are free to accept or ignore such introductory messages,
and may configure Yenta to increase or decrease the approximate frequency of their
occurrence.

Introductions serve the important purpose of getting users together who do not other-
wise know of each other’s existence. After all, if user A sends a message to B, then A
must have known about B first. Similarly, if user A never sends any messages, even to
a whole cluster, then A is effectively invisible to everyone else in the cluster. Introduc-
tions serve as a way to suggest to such lurkers that they interact with particular other
individuals.

4.4.7 ReputationsChapter 2.11 described the basic features of the attestation system, in which users
may create strings of text describing themselves, and others may cryptographically
sign these strings. Yenta supports the creation, display, and signing of attestations, and
users may use these attestations to filter incoming messages based on who has signed
the attestation or which strings appear in an attestation.

The actual things that users say about themselves via this reputation system constitute
a set of social mores. The final development of this set is unknown; it is very often the
case that small initial perturbations can lead to large eventual changes in what are
considered common customs, idioms, and the like [20][33][49][59][60][116]. The
study of how Yenta’s users actually use the reputation system could be very fruitful
from a sociological standpoint.

See Figure 10 for an example from Yenta’s UI of how attestations are seen by the user.

4.4.8 BookmarksIt is often convenient to be able to mark a spot in the user interface with a bookmark,
similarly to the way that one can bookmark a page at a static website. However, Yenta
makes this more complicated than it might appear, because there may be more than
one Yenta—each belonging to a different user—running on the same computer at the
same time. As explained in Chapter 2.12, this means that each Yenta must use a differ-
ent network port to communicate with its user—but browser bookmarking systems
include the port as part of the URL. Consider what happens when the user drops a
bookmark on some page of a running Yenta. When that Yenta is later restarted—after
a machine crash, or because the user shut it down to start running a newer version—
there is no guarantee that it will acquire the same port. Any browser bookmarks will
therefore be invalidated, pointing either at the wrong Yenta, or no Yenta at all.

To avoid this, Yenta has its own, internal bookmarks, which may point at any page
served by the user interface. Users can add or delete bookmarks, and may sort them
either alphabetically by page title, or chronologically by when they dropped them.
Since these bookmarks are kept internally by Yenta, the details of which port Yenta
happens to be currently using for its HTTP server are irrelevant.

4.4.9 NewsYenta occasionally has something to say to the user that is unrelated to anything the
user has done recently, and is also not an incoming message. For example, someone
may have recently signed one of the user’s attestations, and their Yenta has just con-
nected and passed it along. Or Yenta may have decided to rescan the user’s docu-
ments, based on instructions to do so periodically, and may wish to inform the user
that this has taken place.
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In these cases, Yenta makes available a page of news. Each item on this page is a brief
description of some event that has taken place. Users may review the items, and then
tell Yenta to either keep each one or discard it. See Figure 11.

4.4.10 Help Yenta contains a large number of pages documenting its operation. Users may select
such pages at any time. The help system understands which page the user was just
viewing, and can sometimes offer a specific help topic that would be relevant to the
page the user just came from. However, users can always see all available help topics
at any time. See Figure 12.

4.4.11 Configuration Users may tune certain parameters in Yenta to make it more to their liking. For exam-
ple, certain thresholds, or the details of what constitutes a file which Yenta should
ignore during scanning, may not be correct for all users in all environments. Yenta
allows users to adjust the values of these parameters. See Figure 13.

4.4.12 Other operations A few infrequently-used operations are gathered together on a single page; see
Figure 14. These include, for example, allowing the user to change his or her pass-
phrase. In addition, this is how the user can cleanly shut down Yenta by hand, for
example if the host machine is about to be taken down. Failure to shut Yenta down in
this circumstance means that any changes to its state—such as incoming messages—
since the last automatic checkpoint will be lost. The very last page presented by
Yenta’s user interface in this case is shown in Figure 15.

4.5 Politics There are several reasons why this particular sample application was chosen to illus-
trate the political goals of this research. 

First, by basing its assessment of user interests on users’ own electronic mail, Yenta
starts with a set of data that is already quite likely to be considered private by its users.

Because Yenta thus deals with private information so heavily, a solution which does
not make the usual compromises—weak or no encryption, and a central server which
collects everything—was imperative. Without such a solution, user acceptance of
Yenta would be slight.

There is a great pent-up demand for the problem that Yenta attempts to solve—
namely, matchmaking people and finding interest groups. For example, at one time,
Yenta was nothing but a set of proposals, some research papers on simulation results,
and a vaporware description of what its implementation would probably look like.
Nonetheless, the author received (and continues to receive) several hundred messages
every year asking for a copy of the application. Even though, at the beginning,
deployment of the application was stated to be quite some time away, response to this
otherwise-unadvertised potential application was impressive.

This combination of private information, an architectural solution, and great user
demand means that the Yenta application can itself be an exemplar, which by its very
existence advertises that it is possible to offer the service that it does without the tradi-
tional compromises that users have come to expect. In addition, the matchmaking that
Yenta does—allowing people to communicate more easily—is itself a social good,
irrespective of its intended effect on later applications designed by others.

Of course, this stance does not come without a price. For example, Yenta’s use of
strong cryptography means that the application itself, having been written inside the
United States, may not legally be exported outside the United States and Canada
[50][87]. This complicates Yenta’s deployment—it requires that the distribution site
run a script that checks the location of the user requesting the download, and ensures
that the user at least professes not to be interested in violating US export-control reg-
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ulations. Furthermore, it means that Yenta may not be mirrored by other sites, unless
they arrange to do the same.

4.6 Implementation 
details

Yenta is actually implemented as four major subsystems:

• The cryptographic engine, SSLeay [186].

• The document feature extractor, Savant [146].

• The Scheme interpreter, SCM [89].

• The main functionality of the application.

Safety via code reuseIn general, the strategy applied was to reuse, not rewrite, those components that Yenta
required and that were already freely available. Not only is this the expedient course
of action, in the case of Yenta’s cryptographic elements, it is also the safest—crypto-
graphic software required careful review, because even a good algorithm and design
can be ruined by incorrect implementation. Hence, Yenta does not use its own low-
level cryptographic infrastructure—it uses code that others have carefully reviewed as
much as it can. Local modifications to such code, while required to achieve the func-
tionality Yenta requires, are made carefully.

The resulting system is composed of approximately 240,000 lines of C, and 15,000
lines of Scheme.

4.6.1 The C codeThe first three of the subsystems above are implemented in C, and come from outside
the Yenta project per se. SSLeay [186], which is also used in popular versions of the
Apache [7] web server, was written in Australia over a span of many years, and has
been vetted by many developers who use it in their own applications. Savant started
out in life as the original Yenta document comparison engine. This engine originally
used the SMART [188] document comparison engine from Cornell, and later was
completely rewritten locally to include only the functionality required by Yenta—
SMART was too large, too buggy, and did not really do what we needed to do. This
code then became the basis for the document indexing engine—Savant—which itself
also a part of the Remembrance Agent [146], and was then handed back to Yenta—in
short, this code has been getting shared and rewritten between two research projects
for years. Finally, SCM [89] was written by a guest of the MIT Artificial Intelligence
laboratory, again over a period of years.

Code reuse is hardWe have made our own modifications to all three of these packages, rewriting or
extending each one by 10-20% (in terms of lines of code) to make them exactly what
Yenta requires. While Yenta’s development would have been impossibly complex if
all of these packages were to have been written from scratch, its requirements are suf-
ficiently unusual that nothing was quite correct out-of-the-box. Savant, for example,
required extensive changes so that it did not assume it could touch the disk whenever
it wanted (as the Remembrance Agent assumes), and also had little support for the
document-clustering that Yenta performs. SCM required major modifications to
enable reliable networking, to hook it into the SSLeay crypto API, to not make
assumptions about the environment in which it would be run, and to enable shipping a
single binary, consistent of the entire application, on a wide variety of machine archi-
tectures.

PortabilityYenta is designed to be easy to port. One of the modifications made to all three of
these packages was to place each of them under the GNU autoconf/automake system
[109], which allows extremely fast configuration of a C-based system on almost all
UNIX hosts. This means that someone who wishes to build Yenta from scratch, in
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many cases, need type only ./configure; make to build the entire C side of the pack-
age.

4.6.2 The Scheme code Most of the unique functionality of Yenta is written in Scheme. This was done for sev-
eral reasons:

• Scheme, like many Lisp-based languages, solves many traditional problems such
as garbage-collection and exception-handling in a clean, elegant way. This is a
much larger benefit than it first appears—in a C program, every line of code is a
potential coredump, segmentation violation, or memory leak. Yenta must be robust
if its users are to take full advantage of it. One of the easiest ways to ensure this
robustness is to write in a language which can correctly handle these details for the
programmer.

• Scheme is not only safe against crashes, but confers substantial safety against ma-
licious attack. Approximately half of all crack attempts against operating systems
and applications which are written in C consist of buffer-overrun attacks, in which
a deliberately-too-large string is sent to some piece of code which fails to correctly
check the size of the buffer for which the data is destined. In the most commonly-
used environments, such as attack is over used to overwrite the program control
stack and force the application to execute arbitrary code from elsewhere that has
been embedded in the data. Scheme cannot fall victim to such an attack, because
all such data structures are automatically checked by the interpreter for safety be-
fore execution.

• Scheme code is quite compact. An informal estimate of Yenta’s code, and of similar
other projects, indicates that 1 line of Scheme code typically takes the place of 10
or more lines of C code, when integrated over a large project.

• Part of Yenta’s purpose is pedagogical—it exists to show how to write distributed,
privacy-preserving applications. By writing a large portion of it in Scheme, its un-
derlying principles can be more easily revealed without being hidden under a huge
amount of otherwise necessary but verbose code.

• The SCM implementation runs on a very large selection of platforms, including not
only UNIX, but MacOS, MSDOS, Amiga, and others. This means that code written
in Scheme is inherently quite portable, and simplifies the task of making Yenta run
on a large variety of platforms.

• Despite the fact that Scheme is an interpreted language, the SCM implementation
used in Yenta has proven itself to be very fast. We have not observed that the user
need wait for Yenta, at any point, because of any inefficiencies introduced via the
user of an interpreted language.

The actual Scheme code of Yenta is roughly divided into several subsystems:

• The task scheduler. Yenta internally runs a dozen or more individual tasks. Each
task handles one I/O stream, such as communicating with a single other Yenta, or
with the user’s web browser. In addition, various tasks run autonomously at various
times to checkpoint Yenta’s state to disk, dump statistics to the statistics-collection
server, rescan the user’s files for new interests, and so forth. Each task is non-pre-
emptive, due to the nature of the SCM implementation—it must explicitly yield to
the next task—and there is substantial support implemented to make it easy to write
tasks in this manner. Some tasks have higher priorities than others—for example,
the user-interface task runs at very high priority, so the user is never left hanging,
waiting for a page to load. This reassures the user that Yenta is, indeed, still func-
tioning. Finally, tasks which get errors are handled—this includes saving a back-
trace of the task for debugging and sending it to the debugging-log server for later
analysis by the implementors. Typically, a single dead task only momentarily inter-
rupts communication with a single other Yenta, or disrupts a single browser page
fetch, and does not permanently cripple the running Yenta. (Yenta tasks encounter
errors only very rarely, and their incidence decreases as Yenta’s code becomes more
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completely debugged. A system with zero bugs, of course, could be expected to
never have a task get an error—but even though Yenta is presumed not to be at that
point yet, handling errors in this way makes it much less likely that Yenta fail com-
pletely due to an error in one part of itself. This makes Yenta substantially more ro-
bust than much existing software.)

• The user interface. This code understands how to speak HTTP to a browser, includ-
ing using SSLeay to encrypt the connection, and can produce correct HTML for
each page to be shown to the user. Pages are written for the most part in plain HT-
ML, but they may call out to Scheme code to generate part of the page—thus, for
example, a page may have a constant paragraph of text, and a dynamically-gener-
ated table, whose contents are based on Yenta’s current state.

• The InterYenta protocol engine. This manages communications with other instanc-
es of Yenta running elsewhere.

• Interest-finding and clustering. Yenta must keep track of the user’s interests, and
must both communicate those interests to other Yentas, and allow the user to tweak
them.

• Major affordances. Yenta has a large number of various capabilities—message
origination and reception, attestation management, and so forth. Most of these af-
fordances use the code described in previous bullets as infrastructure, and is there-
fore relatively compact and easy to implement once the infrastructure is in place.

4.6.3 DumpingYenta is built in two pieces. First, all of the C code is compiled and linked, yielding a
highly-customized version of SCM that also incorporates the Savant and SSLeay
libraries. Then, the binary is run, and all of the Scheme code and web pages are
loaded into the Scheme heap. Once they have been loaded, Yenta is dumped. This pro-
cess creates a single file which is a snapshot of the original C code, the contents of the
heap, and a continuation which is the locus of control when the binary is restarted.

Yenta is a single binary fileThis procedure means that Yenta may be shipped as a single binary, with no ancillary
files of any sort. Users who download the binary may simply run it as-is, with no
compilation or configuration steps. Making this process trivial was a high priority in
Yenta’s design, since even the vast majority of UNIX users would find it either incon-
venient or impossible to actually compile an application from source. A very small
percentage of those who might run Yenta actually would if they had to build it from
scratch. Of course, since Yenta’s source distribution is public (subject to export
restrictions), anyone who wishes to build Yenta, either because they do not trust the
binaries, or because they need a binary for some machine not already available, is free
to do so.

4.6.4 ArchitecturesBecause ease of installation was a design priority, Yenta is distributed with precom-
piled binaries for popular UNIX platforms. As of this writing, this includes Red Hat
Linux 5.1, NetBSD 1.3.2, HPUX 9 and 10, SGI Irix 6.2, and Alpha OSF1. It is quite
likely that Yenta will compile with no work on many other architectures, but these
were the only ones routinely available to the author.

4.7 Determining user 
interests

Given a collection of documents, as detailed in Section 4.4.4, how does Yenta actually
determine the user’s interests?

4.7.1 Producing word 
vectors

The first step consists of turning each document into a weighted vector of keywords.
Each keyword corresponds to some word that appears in the original document, with
certain modifications [146]:

Toss stopwords• Very common words (stopwords) are removed.

Toss machine-generated 
phrases

• Anything matching an exclusion regular expression is removed. This gets rid of
HTML markup, PGP signature blocks, base64-encoded MIME documents, mes-
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sage header field keywords (e.g., anything to the left of the colon in an RFC822
email header field), and a large number of similar elements.

Stem • The remaining words are stemmed [133] to remove suffixes. This causes words
which have the same root, but are used as different parts of speech, to be more like-
ly to match. Note that this step of the algorithm is English-specific; if Yenta was
ever ported to some other language, the logic of this stemmer would have to be
modified.

Weight and vectorize The number of times each resulting word occurs in each document is then counted,
and the result normalized by the total length of the document. This ensures that long
documents do not disproportionally weight the results. The end result of this process
is a word vector, which details, for each document, which interesting words occur in
it.

4.7.2 Clustering The second step of the process produces clusters of documents which appear to be
talking about similar topics. Each one of the clusters formed is potentially one of the
user’s interests, and is what is referred to more generally as a characteristic in
Section 2.6.

The algorithm which forms the clusters operates as follows. We pick a random start-
ing vector, V, and then pick a second vector, W. We dot the two vectors together, which
determines the similarity of one vector to another. If they match within a threshold,
both vectors form the start of some cluster C. If not, we let W also be the start of a new
cluster, and pick a third vector, X, dotting that against the two vectors we already
have. Any close match joins its cluster; bad matches form their own clusters.

After we have generated a few clusters, we stop attempting to generate more, and sim-
ply dot the remaining vectors against vectors already in clusters. (For efficiency, we
maintain a moving-average representation of each cluster’s centroid; this means that
testing a vector against a cluster requires dotting it against only one average vector,
and not against each vector in the cluster.)

When this terminates, we are left with a collection of clusters, and a collection of vec-
tors which were not similar enough to any already-existing cluster to wind up in one.
The next step is to investigate the fitness of each cluster—after all, the moving aver-
age centroid of any given cluster might have left behind the first few vectors to have
been added. This can happen if we are unlucky in our choice of initial vector, and the
centroid shifts a large amount due to later additions.

Thus, we prune already-existing clusters by dotting each vector already in a given
cluster against that cluster’s centroid vector. Vectors which are no longer close enough
are discarded again.

We are now left with some pruned clusters and a pile of extra vectors. This latter pile
is made up of vectors which never made it into a cluster in the first place, plus vectors
that have been discarded from existing clusters. It is possible that some of these vec-
tors are sufficiently alike that they could form a cluster of their own, so we start the
clustering process again, using this pile of discards—one of the vectors we start with
may form the seed of a new cluster. After the initial cluster-formation step, we check
each vector in the discard pile against all clusters we have generated, and keep any
good matches.

This algorithm iterates, controlled by thresholds at various points, until some propor-
tion of vectors are in clusters, and enough iterations have run. We are left with clusters
that have empirically-reasonable variance in terms of the vectors they include, and a
pile of leftover vectors.
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The algorithm actually runs the forward (clustering) direction and the reverse (prun-
ing) direction in parallel. This is analogous to the way bone is formed—via cells
called osteoblasts—and destroyed—via osteoclasts. Bone is piezoelectric, and gener-
ates an electrostatic field when under mechanical stress. Osteoclasts are constantly
tearing down bone, whereas osteoblasts produce more bone wherever this is a large
electrostatic field. Hence, bone preferentially builds up wherever the stress is high-
est—hence reducing the stress again—without building up in places where it is not
needed. Yenta’s document-clustering algorithm constantly tries to build up a cluster
by adding any vector which is close to that cluster’s centroid, while it simultaneously
tries to tear down the cluster by removing any vector newly deemed unfit to remain.

The initial vectorizing algorithm, which converts documents to vectors of keywords,
runs in time and space that is approximately linear in the number of words in all doc-
uments. The clustering algorithm is slightly more complicated. The forward direction
runs in approximately linear time, due to its use of the moving-centroid approach. The
reverse direction runs in approximately O(n2) time, since the total number of times
any given vector might be chosen to compare against the centroid depends on the size
of the cluster and how long this cluster has been around. However, since the number
of clusters—generally under a hundred, and often under twenty—is much smaller
than the typical number of documents—which typically number in the thousands or
more—the overall behavior of the clustering algorithm is typically close to linear.

The algorithm chosen here was simply generated ad-hoc. We shall have more to say
about its performance in Chapter 5, but the overall lesson is that it seems to work well
enough. Since Yenta makes no particular claims either to advance the state of infor-
mation-retrieval research, nor of optimality across any particular dimension of docu-
ment comparison, this is acceptable.

4.8 Security 
considerations

We spoke at length about the security of the general architecture in Chapter 3. Here,
we shall speak about a few wrinkles that Yenta introduces.

4.8.1 Encrypting 
connections

Connections between Yentas, and connections from Yenta to the user’s browser, are
always encrypted. This is accomplished by running SSL [186] between each pair of
communicating agents, using Diffie-Hellman key exchange for perfect forward
secrecy—session keys are discarded at the end of the connection—and self-signed
certificates to complicate man-in-the-middle attacks.

Note that these self-signed certificates make it difficult to do a man-in-the-middle
attack only between two Yentas (or a Yenta and a browser) that have previously com-
municated. They are worthless if a man in the middle can be in the middle from the
very start of the conversation, since there is no certifying authority, nor a web of trust,
available to validate the cert. On the other hand, since we are in the case that we have
never talked to the Yenta at the far end of the connection anyway, we might as well
treat the man in the middle as just some other unknown Yenta we have never spoken
with. The man in the middle can keep both ends from knowing the true YID of the
endpoints, but it cannot otherwise cause much trouble—for example, attestations are
signed by other Yentas, not by the Yenta belonging to the user the attestation refers to.
Indeed, were someone to set up a man-in-the-middle Yenta that successfully passes
data in both directions to two other Yentas, the largest apparent problem surfaces if
the middle Yenta vanishes—at that point, neither endpoint knows how to talk to the
other.

4.8.2 Protecting 
persistent state

Yenta must save persistent state to disk. If it did not do this, it could not survive the
crash of either Yenta or the host computer. There are two cases here: the user’s charac-
teristics, and everything else.
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Characteristics First, we have the user’s characteristics, which were derived from the user’s file and
email. These are stored unencrypted, for two reasons:

• The characteristics were originally derived from reading messages which arrived
over cleartext channels, and are stored on the disk in the clear. The original repre-
sentation of this data (files and email) is far more comprehensible to humans than
the vectorized, stopworded, stemmed representation left on disk—hence, leaving
this data around on disk, assuming it is at least protected against other readers using
filesystem protection bits, is no more of a privacy exposure than what the user was
already doing.

• The Savant library is unprepared for dealing with encrypted data. If we did not also
have the case detailed in the above bullet, it would be worth fixing this. As it is,
however, such effort would not improve Yenta’s privacy.

Keys, conversations, ... Even though the user’s characteristics were derived from the user’s mail—presumed
to already be sitting around on disk in the clear—the stored conversations in which
the user has participated were not formerly stored in the clear, and were carefully
transmitted between agents using encrypted protocols. We should not presume to
expose them once they have been stored on disk. Even worse, the user’s private key—
the very basis of his or her identity—is in the same file. Exposing this would be a
disaster, since it could allow anyone to both eavesdrop and impersonate the user.

The strategy used is to encrypt the data directly to disk, using IDEA in cipher-block-
chaining (CBC) mode. It uses ePTOBs, aka encrypting Scheme port objects, which
act like normal Scheme ports, but encrypt or decrypt along the way—they use SSLeay
for their underlying implementation. The question then is, how does Yenta store the
key so the data may be decrypted later?

What it does is to write out a small preamble, which consists of some bootstrapping
data, and then the main data, which consists of the encrypted state. Both of these are
written to the same file on disk.

Yenta’s actual persistent state is a variable-length string of bytes, called D. [We do not
compute a MAC of D; perhaps we should if we can. This would provide some protec-
tion against an attack that changes bit(s) of ciphertext (hence trashing the plaintext),
but it would require somehow either precomputing a checksum, or computing one on
the fly as data is written out. Both are somewhat inconvenient.]

When Yenta first starts up, it asks the user for a passphrase, P. This passphrase does
not change unless the user manually changes it. Yenta immediately computes the
SHA-1 hash of the passphrase, PSHA, and throws away P.

Saving state Each time Yenta needs to save state, it generates a new 128-bit session key, K, which is
used for keying the cipher. It also generates a 64-bit verifier, V. Both of these are high-
quality random numbers, drawn from the random pool. Finally, it generates an
encrypted version of the session key, KP, using the first 128 bits of PSHA as the encryp-
tion key and IDEA as the cipher. (Since we’re encrypting 128 bits of random data, we
need neither any block-chaining, nor any IV.)

It then writes out the following data

• To the preamble (key) portion of the file, in the clear:

• The cleartext version of the browser cert

• The encrypted version of the session key, KP.

• To the main (data) portion of the file, encrypted on the fly (via an ePTOB keyed by
K, the session key):

• Two copies of the verifier, V, one immediately after the other; we shall call this
V1V2.
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• The persistent state, D.

Because data is encrypted on the fly, before it hits the disk, what we have really writ-
ten to the main data portion of the file is really [V1V2]K and DK.

Restoring stateYenta only reads its persistent state upon startup. The first thing it must do is to read
the cleartext version of the browser cert from the keyfile. It requires this data so it can
establish an SSL connection to the user’s browser, without generating a brand-new
certificate—doing so would require that the user walk through all the cert-validation
menus in the browser for every Yenta startup.

Yenta then prompts the user for the passphrase, P, and computes PSHA, as above.

It then reads the encrypted session key, KP, from the preamble, and decrypts it, using
the first 128 bits of PSHA as the key. This regenerates the true session key, K.

Now that K is known, Yenta continues reading, now in the encrypted portion of the
file, and reads the first 128 bits from it, which should be V1V2—the two concatenated
copies of V. If V1 does not match V2, then K must be incorrect. For K to be incorrect,
we must have incorrectly decrypted KP, which implies that PSHA is wrong. The only
way this could happen is if the user mistyped the passphrase, so we prompt again, and
repeat.

Assuming that the verifier matches, we now have a correct session key, so we supply
that to the decrypting ePTOB and read the rest of the file, which converts DK back to
D.

Vulnerability analysisWhat vulnerabilities might exist in this approach?

• Data is never left unencrypted anywhere on disk.

• We assume that IDEA-CBC is secure up to brute-force keysearch. Nonetheless, we
assume that we do not want to gratuitously enable a known-plaintext attack. [The
ePTOB itself also includes a 64-bit IV before the encrypted data; this helps to foil
known-plaintext attacks on the first block. This would otherwise be a very simple
attack, since the contents of the first block are nearly constant for all Yentas.]

• We assume good random numbers.

• We are not secure against an attack that can read the contents of Yenta’s address
space. (This is true of the entire design: anyone who can read the address space can
suck out PSHA, which is kept around indefinitely. This does not matter, though, be-
cause such an attack could suck out the RSA keypair which defines the basis of the
user’s identity—this is far worse, and is basically a complete compromise, allowing
both eavesdropping and spoofing.)

• A weak passphrase is vulnerable to dictionary attack, which will allow decrypting
the session key and thus allow access to the plaintext of the private key.

• It is possible that [V1V2]K could leak some information to a cryptanalyst. E.g., it is
known that 4 bytes are repeated in the next block in a predictable place in the ci-
phertext (since we use an IV but not variable padding). This does not appear to be
an actual vulnerability, since V is not known plaintext. (Hashing the second copy
might help even so, or might only add a constant factor to the attack; not clear.)

It appears, as usual, that the primary vulnerabilities are (a) insecure process address
space, and (b) the user picking a poor passphrase.

Full disksThere is one final consideration. What happens when the disk fills up?

Yenta tries to be relatively careful about the integrity of the saved statefile. After all, if
this file is corrupted, the user’s private key goes with it, and hence all of the user’s
identity and reputations (via attestations signed by other users) as well. This is an
intolerable loss.
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The most obvious defense is to write a temporary copy of the statefile, ensure that it is
correct, and then atomically rename it over the old copy. This means that a crash in
the middle of the write will not corrupt the existing statefile. But how do we know that
the tempfile was, in fact, written correctly?

SCM does not signal any errors in any of its stream-writing functions, because it fails
to check the return values of any of the underlying C calls. This means that, if the disk
fills up, the Scheme procedures write, display, and related functions will merrily
attempt to fill the disk to full and bursting, and will continue dumping data overboard
even after the disk is full, all without signalling any errors. This is an unfortunate, but
hard to fix, implementation issue.

Even if we check at the beginning and the end whether the disk is full (by writing a
sacrificial file and seeing if we get the bytes back when we read it), consider what
happens if the disk momentarily fills in the middle of saving state, then unfills. This
could easily happen if something writes a tempfile at the wrong moment. In this case,
SCM will silently throw away n bytes of intended output, while not detecting the fail-
ure. Even rereading the file may fail to detect it, if the dropped bytes were inside a
string constant. One possible solution is to call force-output after every single charac-
ter, then stat the file and see if its length has incremented, or, alternatively, to write
and read a sacrificial file after each character of real output. Either of these
approaches is (a) extremely difficult to implement (since we write output in larger
chunks, and through an encrypting stream as well), and (b) horribly inefficient, proba-
bly slowing down checkpointing by at least two orders of magnitude if not more.

To avoid this, we run a verification function over the data written, every time it is writ-
ten. This function does the work of reading and checking the contents of the preamble
against the running Yenta (e.g., encryption protocol version, the browser cert and
browser private key, etc.), and then computes the SHA-1 hash of the entire encrypted
portion of the file, e.g., of the data portion in the discussion above. This is then com-
pared with an identical hash, computed seconds earlier when the data was written to
disk. If anything is wrong with the preamble or if the hashes do not match, then some-
thing is wrong with the data we just wrote; a single byte missing or even a single bit
trashed will be evident.

In this case, we do not rename our obviously-corrupt tempfile over the last success-
fully-saved statefile. Instead, we delete it again, since it may be contributing to a disk-
full condition and is bad in any event. In addition, we set a variable so the user inter-
face knows that something is wrong, and can tell the user, who can presumably
attempt to fix whatever is preventing us from successfully writing the statefile.

Note that this gives us no protection over having the statefile trashed after we have
checkpointed. If Yenta is still running, the damage will be undone at the next check-
point, since the old file will simply be thrown away unread. However, if Yenta was not
running when the file was trashed, Yenta will simply fail to be able to correctly read
the entire thing. (Chances are overwhelming that any corruption of the file will yield
garbage after decryption that read will complain about, and Yenta will be unable to
finish loading its variables.) In this case, the user will have no choice but to restore the
file from backup. This is the expected case anyway if files are being trashed at random
in the filesystem.

Note also that Yenta’s support applications, which write plaintext statefiles and do not
save state using encryption, do not do this checking. They save very little irrecover-
able state in normal operation; the big exception is the statistics logger, which will
simply have its data truncated, losing log entries that arrive while the disk is full and
possibly leaving a corrupted last entry. This is not considered a serious problem. Fur-
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thermore, this state is not being saved in a statefile at all, but is being explicitly written
to a a separate logfile.

4.8.3 Random numbersYenta’s security is dependent upon having good random numbers, since these num-
bers determine the quality of its cryptographic keys. On machine architectures which
have /dev/random, Yenta simply uses that—it is designed to be good enough for most
cryptographic applications, and tries hard to collect random state from all over the
machine.

Machines which lack /dev/random instead prompt the user, the very first time Yenta
starts up, to enter a large number of keystrokes, and Yenta measures the interarrival
time of these keystrokes. This is the same technique (and partially the same code)
used by PGP.

Yenta then maintains that random state by keeping a random pool, which is a collec-
tion of random bits. Everything that uses bits from the pool, such as generating a key,
keeps track of the number of bits used, and Yenta runs several tasks at a variety of
time intervals which attempt to regenerate randomness in the pool by running a vari-
ety of programs which sample many events happening on the system, as well as also
using /dev/random, if available. This random-pool is saved when Yenta checkpoints
its state, so newly-started Yentas have randomness. As long as Yenta can continue to
gather randomness data from the machine faster than it is consumed to generate, e.g.,
session keys, its cryptographic quality should remain high. (If Yenta cannot do this, it
warns the user; this is considered an implementation error.)

4.9 SummaryIn this chapter, we have described Yenta—the sample application which demonstrates
how the underlying architecture can be used in a real system, and which is intended to
raise public awareness of the techniques developed in this research and the rationale
for their development. We have presented several sample scenarios to motivate why
Yenta is useful, and then described the various affordances provided by Yenta to its
users. These include automatic determination of interests, messaging into groups of
users who share interests or to particular individuals, automatic introductions, and a
reputation system. We then delved into Yenta’s implementation, describing the gen-
eral structure of the code, what the major pieces are, and how they fit together. Finally,
we discussed those security considerations which are specific to Yenta itself and not
necessarily to the general architecture.
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Figure 6: A sampling of interests. Real users tend to have many more than shown here.

Figure 7: Recent messages received by this Yenta, and options for dealing with them.
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Figure 8: A typical message, and how to reply.

Figure 9: Replying to a message.
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Figure 10: Manipulating attestations.

Figure 11: Recent news about this particular Yenta.
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Figure 12: A sampling of the help.

Figure 13: Adjusting internal parameters, for those who demand knobs..
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Figure 14: Some infrequently-used operations

Figure 15: If Yenta is manually shut down, this is the last page it shows.
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CHAPTER 5 Evaluation

5.1 IntroductionThis research proposes an architecture with political ramifications, and a sample
application that demonstrates how such an architecture can be used. What are suitable
metrics for evaluating it? The space of possible evaluation strategies, and the ques-
tions that could potentially be asked, is quite large. In this section, we shall whittle the
problem down a bit. Later sections will cover:

Section 5.2• Simulation results of Yenta’s network clustering algorithm

Section 5.3• How can we collect data from running Yentas?

Section 5.4• What data is currently collected?

Section 5.5• What are some of the questions we can answer?

Section 5.6• How can we evaluate Yenta’s security?

Section 5.7• A risk analysis of the architecture and the fielded system

Section 5.8• Other applications suited to this architecture

Section 5.9• Ideas on motivating businesses to use this technology

Section 5.10• Future work

First off, we aim to show that one can design an architecture which can protect, yet
still use, personal information when implementing applications with certain charac-
teristics. The architecture, and the types of applications for which it is suitable, was
described in Chapter 2, and the particular application used to investigate the architec-
ture was described in Chapter 4. We have claimed that this architecture is an advance
over traditional methods of handling this information for the same types of applica-
tions.

The eventual goal of this research is to encourage system designers to change the way
they design systems—in particular, to start from a social agenda and design forward
from that, rather than ignoring such an agenda or assuming that it will hinder building
systems that people can use for useful tasks. This is an essentially political motivation
which attempts to give users systems that are more robust against failures and more
likely to protect their rights. Actually observing such a change, however, involves a
long timescale—we would be dependent upon finding some system which was going
to be designed in a centralized, non-privacy-preserving fashion, but which is now
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going to be designed differently, because of the research described here. Such designs
take time, and often happen in with little public disclosure.

As discussed here, therefore, we are not aiming to show that the architecture has
already made an impact, nor are we aiming to show that the sample application—
Yenta—has or will be used sufficiently for the its political impact to be felt. That is
beyond the scope of this dissertation—but certainly not beyond the scope of the polit-
ical agenda that motivates the work. Indeed, one of the hopes in this research is that it
will contribute to the discourse surrounding the design and implementation of such
systems.

Therefore, evaluation focuses on technical implementability of the ideas involved.
The sorts of questions we will answer are of the form: Can Yenta be implemented? Do
Yentas cluster? Does it help users? Does it appear sufficiently secure?

A fascinating next step, after answering such questions, would be to investigate how
users actually use Yenta. For example, the reputation system is likely to generate a set
of social conventions, and it is not clear what those will be, and how those will change
over time. Such sociological study is also outside our scope here, although the author
does hope to do such investigation in the future. 

Note that, in investigating Yenta’s performance, we make no strong claims here about
optimality. One could ask a variety of questions about Yenta’s clustering methods,
either those used to cluster documents within a single Yenta, or the way in which Yen-
tas form clusters on the Internet. What’s inappropriate about asking questions about
optimality?

• There is no known metric for determining what optimal means when deciding
whether or not two humans share an interest in a subject, nor in what it means for
them to have similar-looking documents. One can invent a large number of defini-
tions, but it’s not clear whether this is a useful exercise.

• Optimal solutions usually take a long time to converge; most such problems are
NP-complete. Real-world systems always change faster than can be accommodat-
ed by such slow methods. In such systems, it is always better to be acceptably
fast—and approximately correct—than unreasonably slow—and perfect.

This lack of concern about optimality is one of many reasons why we make no claims
that Savant, which turns documents into keyword vectors, advances the state of the art
in information retrieval. Nor do we claim that the algorithm Yenta uses to cluster the
resulting vectors—before it contacts other Yentas—into user interests is necessarily
an advance, either. In both cases, they are simply sufficient to make Yenta useful.

In evaluating results from fielded Yentas, there are a large number of questions we
could ask. We shall restrict ourselves to a small set here, but also demonstrate how a
large number of different questions could be answered with the infrastructure that is
available.

It is important also to keep in mind what we are investigating. We are looking at the
use of a particular implementation of a single application that is the exemplar of a
general architecture. This can answer certain questions, like whether the architecture
works at all for any application, but also does not answer many others, such as how
Yenta might be used differently if it had a slightly different mix of features, or ran on
non-UNIX platforms, and so forth.

5.2 Simulation 
results

We first turn out attention to some simulation results for the clustering algorithm that
Yentas use among themselves. This algorithm was described in depth in Section 2.8,
with some additional details about the implications of this algorithm in Section 2.9.
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Many of these results were also reported in [61] and [58]. (In addition, even earlier
results of document clustering—e.g., within a single Yenta—using an older version of
the clustering algorithm (not described here) and SMART [188] as the comparison
engine, appeared in [56].)

Up to 1000 Yentas were 
simulated

The Yenta clustering algorithm was simulated for various numbers of interests, typical
sizes of its rumor cache, and up to 1000 Yentas, and showed good performance and
convergence. Graphical results of these simulations are presented in Figure 17, which
have been excerpted from several animations produced to study Yenta’s clustering
behavior. We discuss the results below.

Three different simulationsThree different simulations are presented. For each, the format of presentation is iden-
tical. Each simulation is shown as a series of images taken at various timesteps. The
final state of any given simulation is the large image on the right; the six smaller
images to the left of that image represent earlier stages of the simulation, reading
from left to right and top to bottom.

Interpreting the displaysEach Yenta in any given simulation was given a random interest from the total number
of interests available, and then the size of its cluster cache was examined at each sim-
ulation step, which indicates how successful it has been at finding other Yentas which
share its interest. For all Yentas that share the same pair of parameter values—for
example, rumor cache size versus number of Yentas for the first simulation—and are
hence in the same bar of the display, the size of their cluster caches were averaged.
This average is then compared to the total number of Yentas that could have conceiv-
ably been in the cluster cache (if all Yentas sharing the interest had been found), and
that ratio is expressed as the percentage height of the bar.

Varying the rumor cacheThe first simulation shows the effect of varying the size of the rumor cache for up to
1000 Yentas, given 30 different interests split amongst the Yentas. Roughly speaking,
it shows that the size of the rumor cache does not make much difference in the speed
of cluster formation for more than around 400 Yentas.

Varying the number of 
interests

The second simulation varies the number of possible interests shared amongst the
Yentas with the total number of Yentas, given a rumor cache size of 50. As might be
expected, it takes longer to find all the other Yentas one would want as the number of
interests increases, or as the number of total Yentas increases.

Ratio of rumor cache to 
interests

Finally, the third simulation shows the effect of varying the size of the rumor cache
for various numbers of interests, given 1000 Yentas. This seems to show that a rumor
cache size of 15 is enough for small numbers of interests—between 10 and 30—and
that raising this size beyond 35, even for large numbers of interests, does not buy us
much.

The basic clustering worksThese are strong results. They show that Yenta’s clustering behavior is stable—Yentas
do not try forever to find each other, nor do clusters of them break apart for no good
reason—and at least acceptably efficient—the number of messages exchanged in
order to cluster most of the Yentas is not unreasonable.

5.3 Collecting data 
from Yenta

Let us now turn to actual application. The general architecture described in
Section 2.13 shows how to return data from running Yentas in such a way that it may
be analyzed. In summary, the approach is to:

• Run a central server, at an address known to all Yentas, which can collect the data.

• Have each Yenta transmit certain statistical data to the central server, making sure
to:

• Blind the data before transmission by stripping out identifying information

• Include a per-Yenta unique random number in the data so successive log entries
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from the same Yenta may be correlated

• Encrypt all data during transmission

• Write all the data to disk for later analysis

Collecting this sort of statistical information has considerable risks. If done incor-
rectly, it could jeopardize users’ privacy, and their trust in the entire system, as well as
enabling as a single point of attack for a malicious intruder. Therefore, let us follow
the steps above, starting with transmission and ending with reception of the data, in
order to demonstrate that the collection of this data is not a serious threat.

Central receiver Each running Yenta knows the address of the central statistics server, and has a task
which periodically collects certain information (see Section 5.4 below), creates a log-
ging record, and sends that record to the server. A user’s Yenta also sends this infor-
mation immediately if its user instructs it to shut down.

Blinded data The information sent is carefully blinded. For example, Yenta by default creates an
attestation identifying the user’s Yenta by its Yenta-ID, which users may get signed
like any other attestation. This attestation is carefully removed from the logging data,
before transmission, since otherwise its presence in the data would identify exactly
which Yenta logged this record. For more details on the sort of data being logged and
why it should be safe, see Section 5.4.

In addition, the statistics-ID which identifies the Yenta doing the logging is a 64-bit
random number, having no connection to any other identifier in Yenta. It is communi-
cated only to the logging server—not to other Yentas—and has no personal informa-
tion embedded in it. Once the data has been written to disk, there is no record of
which IP address logged this record, and hence no backpointer to identify where this
data came from. All we can know is whether the same Yenta later updates it.

Encrypted transmission Data being sent to the logging server is encrypted using a session key, in a very simi-
lar manner to the way in which Yenta saves its state to disk (see Section 4.8.2). This
session key is randomly generated before each attempt to log, and is never reused. A
preamble is sent before the actual record consisting of this session key, encrypted with
the public key of the logging receiver, which is known by all Yentas. Since only the
server knows the private key, only the server may decrypt the session key and thus
decrypt the data.

Each individual Yenta keeps track of whether the logging receiver claimed that the
logging record was successfully received. If the receiver appears to be down, Yenta
simply abandons the attempt to log, remembers that is has done so, and tries again
later. This keeps the receiver from potentially being a central bottleneck, whose fail-
ure could inhibit the normal operation of all Yentas everywhere. In addition, Yentas
periodically prune their logging information if it is too old—this means that, if the
receiver vanishes permanently, each Yenta does not store a monotonically-increasing
amount of pending logging information.

Vulnerabilities At the moment, the server decrypts the received data before writing it to disk. It would
be slightly safer to leave the data encrypted instead—this would mean that even the
server need not know the private key, which could be kept offline and used only when
the data is being decrypted for analysis. This complicates analysis, but is being con-
sidered. Since all data logged is theoretically already safe—unlikely to compromise
users’ privacy—the marginal utility of including this step is dubious.

If the server’s private key is revealed—by a cracker, say—it will only be useful in
attacking a user’s privacy if the person who knows the key already has access to the
traffic from the Yenta which is the target. After the traffic has arrived at the server is
too late—while an attacker who could read the disk could read arbitrary logging
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records written there, he or she would have no way to know which machine that Yenta
was running on.

Don’t do this if you can 
avoid it

There is no question that running this central statistics receiver is a potentially large
invasion of user privacy, and that it presents an inviting target for attack. Any non-
research implementation of this architecture should not be running such a server. Fur-
ther, users are well-advised to carefully vet the operation of any architecture which
employs such a server—one of many good reasons for ensuring that the source code
for any such application is open to public inspection. While the design of the logger
was carefully constrained to use only data that appeared safe, it still presents risks.

5.4 What data is 
collected?

Yenta keeps track of two main classes of things for the benefit of the statistics
receiver:

Events• Events. These are changes of state, generally caused by some external action—such
as a request by the user for a web page from the user interface, or an incoming con-
nection by some other Yenta. Some events are internally generated, such as a timer
expiring indicating that Yenta should rescan the user’s documents.

Summaries• Summaries of certain internal state. These are generated on-the-fly, when Yenta has
determined that it is time to write a log entry, and are typically estimates of the size
of internal data structures.

CountersIn general, any given event will increment a counter which keeps track of the number
of times which this event has occurred. Some events—such an impending user-com-
manded shutdown—also cause logging to happen immediately.

The data is persistentAll counters and event logs are maintained in Yenta’s permanent state, and are regu-
larly checkpointed to disk. This means that any event which fails to be logged before
Yenta is shut down will be logged the next time Yenta is restarted; similarly, counters
such as the total number of minutes this Yenta has been in operation will accumulate
across successive runs.

A single logging recordAn actual logging record thus consists of the following information:

• The statistics-ID (see Section 5.3).

• The time of the message, in Universal Coordinated Time (UTC).

• The current values of all counters.

• The values of all user-settable parameters. These include the various thresholds and
preferences the user has set through the interface.

• All attestation strings, and the number of signatures on each attestation. Note that
the attestations are stripped of the Yenta-ID normally attached to them, and the sig-
natures themselves are not sent, only a count of them.

• The number of interests known for this user. This is computed from the data struc-
ture that keeps track of the Yenta’s interests. Note that this is a simple count, not the
interests themselves.

• The number of clusters this Yenta is in, and the approximate number of known Yen-
tas in each computed in part from cluster cache information. This is not necessarily
the total number of interests that this Yenta knows about, since not every interest
may have had a cluster found for it yet.

• The number of currently-open network connections to other Yentas. Since a con-
nection is only open when two Yentas have something to say to each other—not
simply because they know of each other’s presence—this is more an indication of
the instantaneous load being placed on the network by this Yenta than it is of how
many clusters it is in. (How many network connections have been opened in the
past, how many referrals have been done, and so forth, are found in the various
counter values mentioned above.)
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• A list of events which have transpired since the last log transmission.

Watching one Yenta over 
time

To actually determine how a particular Yenta has changed over time—such as how
rapidly it manages to find clusters for its user’s interests—successive records from the
same statistics-ID are compared, along with the timestamp logged with each.

A sampling of the sort of counter data which may be collected includes:

• System operations counters: number of startups, shutdowns, errors, bug reports,
and time in minutes that this Yenta has been running.

• User interface counters: number of pages and documentation pages fetched.

• Inter-Yenta communication and network statistics: connections initiated and
served, protocol opcodes sent and received, network errors, and authentication fail-
ures.

• Document clustering counters: number of and total size of documents read, and the
number of rescans and reclusters performed.

• Matchmaking, clustering, and messaging counters: number of Yentas encountered,
number of clusters joined and left, number of introductions initiated and responded
to, the number and total size of individual and cluster messages sent and received.

• Attestation system: number of attestations made and the number fetched, and the
number of signatures made and received.

Events that are logged include the following: 

• Startup and shutdown

• Contact with another Yenta

• Exchange of cluster information

• Cluster entered or left 

• Referral made

• Introduction initiated, granted, or refused

• Message sent or received between users

• Attestation created, signed, or fetched

Clearly, this is a great deal of potential data. We shall examine only a very small sub-
set of it below.

5.5 A sample of 
results

To evaluate Yenta’s performance in the field, a pilot study was undertaken in which
Yenta was advertised to a small group of MIT users. This pilot study was deliberately
restricted to a relatively small audience, and Yenta’s availability was not advertised to
a wider audience. The primary reason concerns the implementation of Savant cur-
rently present in Yenta—this version of Savant does not have logic to recognize and
reject many common artifacts in electronic mail messages, such as included header
fields, PGP signature blocks, URL’s, and so forth. Thus, it tends to falsely cluster
messages based on these machine-generated elements, as well as on their actual con-
tent as understood by users. This means that, in addition to clusters that most users
would deem useful, there were a large number of clusters which were unhelpful.

A new version of Savant that does not have these disadvantages was made available
shortly before this analysis, but not soon enough to facilitate its incorporation into
Yenta. Doing such an integration will also change Yenta’s understanding of clusters
and is not a backwards-compatible change; hence, users in the field will be inconve-
nienced by having their existing clusters disrupted unless great care is taken. Opera-
tional concerns such as this have therefore encouraged only a small deployment at
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present so as to minimize disruption of an existing user base. Once the new Savant is
integrated, Yenta will leave pilot status and become available to a much wider audi-
ence, and will be advertised to such audiences.

5.5.1 Qualitative resultsWe now turn out attention to some of the available results. This data is derived from
the pilot study, in which no more than 50 Yentas were operational at any given time.
Exactly how many Yentas are in operation at any instant is somewhat uncertain, for
several reasons. We can only know how many Yentas have run recently by investigat-
ing the statistics logs, which are keyed by the unique SID. Thus, we must determine
whether any given Yenta is still in operation by waiting to see if it continues to log
data. In most environments, this would be easy to see, but the particular environment
to which Yenta was deployed in the pilot—MIT’s Project Athena—tends to encourage
users to shut down Yenta frequently, since users rarely have a workstation of their own
available and must instead use public ones, which kill background tasks when the user
logs out. Finally, the existing Savant implementation in Yenta tends to accumulate too
much machine-generated data from email messages. Users tended to discard entire
databases and start over on different collections of files when trying to determine
which files would best reflect their interests. Since Yenta was not designed to discard
its entire database in this fashion, its users took deleting Yenta’s saved state and ini-
tializing brand-new copies of Yenta, hence artificially inflating the generated statistics.
In the analysis that follows, Yentas that do not appear to have run recently have been
omitted as having been started briefly and discarded in favor of a new run as a brand-
new Yenta. This will be less of a problem with the newer Savant; also, providing users
with easier ways to tune Yenta’s initial selection of files will help.

After pruning the data for various artifacts such as these, and to reduce the analysis
task somewhat, we were left with a sample size of 21 Yentas. This sample will be used
in the discussion that follows.

Clustering worksIn general, results from fielded Yentas bear out the simulation results in Section 5.2.
For example, Yentas will cluster correctly if they share sufficiently-close interests,
and, likewise, they will correctly conclude that they should not cluster if their interests
are divergent. This is the case despite the technique, as described in Chapter 2.8.3, of
mixing in other data from the local Yenta’s rumor cache to provide plausible deniabil-
ity for its user to a querying Yenta.

Yentas can find each otherYentas have demonstrated that they can find each other in all the ways designed into
the architecture—via the bootstrap server, via broadcast on the local Ethernet seg-
ment, and by detecting the presence of a formerly-unknown Yenta from the contents
of some other Yenta’s rumor- or cluster caches.

The protocol worksFurther, the running Yentas do not display serious protocol abnormalities—any given
pair of Yentas that were formerly unknown to each other initiates a conversation,
dumps interests back and forth, and correctly clusters, or not, based on those. They do
not get hung up exchanging data forever, and correctly revisit each other at various
intervals to see if anything has changed.

Message and attestation 
relaying works

Yentas which share an interest can correctly relay messages back and forth to each
other. This behavior was verified both in one-to-one messaging and in one-to-cluster
situations. Similarly, attestations may be created, signed, and displayed to Yenta’s
users.

Determining the user’s 
initial interests has an 
obvious path to 
improvement

Yenta’s determination of user interests was judged subjectively by investigating the
interests that it found from a variety of files. In the currently-fielded Yenta, its deter-
mination was sufficient, but not as good as it can be. In large part, this is due to its use
of an older version of the Savant comparison engine, as detailed above.
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Saving state works Individual Yentas can correctly save and restore their state across crashes—either of
Yenta or the underlying machine—and across user-commanded shutdowns. They
have also been shown to interoperate with a variety of common web browsers.

Yenta is fast enough Yenta has also proven to be acceptably fast. Even running on five-year-old hardware
(an HP 9000/725), it can scan and cluster several megabytes of mail—about as much
as is reasonable to use—in a handful of minutes. A typical clustering attempt with
another Yenta, in which both Yentas must share not only their interests but many inter-
ests from their rumor caches for plausible deniability (see Section 2.8.3), takes a few
minutes. In part, this is due to the throttling effect of the network, but it is also the
case that we do not wish Yenta to consume all available CPU resources on the
machine on which it runs—after all, it runs as a background task most of the time.

Since Yenta is designed to run with only occasional user attention, even these results
are better than they appear. For example, even though it takes a few minutes for two
Yentas to determine whether or not they share an interest, the user can still fetch pages
from the user interface, talk to other Yentas already known to be a shared cluster, and
so forth.

Logging errors helps a lot Handling internal errors and reporting them to the statistics server was very useful in
the field. The very first deployment of Yenta to users turned up a number of minor
bugs, generally caused because users tended to use Yenta slightly differently than its
implementors sometimes did—that caused tasks to occasionally err. The symptom of
such a failure is generally that the user sees a page request of the user interface simply
hang until it is retried; this starts a new task, and generally whatever bug was encoun-
tered would not be retriggered. However, because such failures were reported to the
statistics server, complete with backtraces, tracking down the bugs and fixing them
was much simpler than it would have been had self-reports from the field been the
only method.

5.5.2 Quantitative results To lend some concreteness to the discussion above, let us examine just a few selected
statistics from those logged by Yentas in the field. These statistics cover 21 Yentas
deemed representative, logged over a period of about 25 days, from the pilot study.
They are drawn from approximately 2200 individual entries to the statistics logger.

The table in Figure 16 below summarizes the results. We investigated a few elements
from several different areas of Yenta’s operation: how the user interface was used;
how many documents were scanned and how many interests were determined as a
result; how the attestation system was used; some clustering data; a quick look at
Yenta’s networking protocol, and how long Yentas tended to run. For each such ele-
ment, we present the total across the n=21 Yentas, the minimum and maximum values
seen, and their average and standard deviation. Many of the minimum values are zero,
generally due to a Yenta being started, minimally configured, and then shut down
without rerunning it later. Approximately 3 Yentas from the sample below show a
short enough total runtime that this is likely for them, but their results were included
in the totals because there was still useful data—such as number of documents
scanned and number of interests found—from such Yentas, even though they were not
allowed to continue running long enough to do anything useful for their users.

The statistics above show that users made extensive use of the UI—in other words,
they interacted a lot with their Yentas. They also fetched a large number of help pages,
which is to be expected of a new application. One user scanned a very large number
of documents (over 8000), although must scanned a must more reasonable number
(the median was around 400, and the average around 600). From these, users were
typically presented dozens to a hundred or so interests, and tended to find at least a
few other clusters to join. A typical Yenta sent a bit more than a megabyte—spread
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out over the three weeks of the pilot—to accomplish this level of clustering. Finally,
any given Yenta typically accumulated around 100 hours of operation in this inter-
val—being generally shut down when its user was logged out, for those using MIT
Project Athena machines—although some ran almost the entire time and are still run-
ning as of this writing.

5.6 SecurityLet us now turn to evaluating Yenta’s security. It is widely accepted that there is no
way to be absolutely sure that any particular piece of software, if at all complicated, is
completely secure. However, there are many potential ways to increase our confi-
dence, which include, among others:

• Black-box analysis. This involves attempting to crack Yenta’s security completely
from the outside, as if it was a black box.

• Formal methods. These involve proving theorems about the underlying crypto-
graphic operators, and about how they are used in Yenta’s actual implementation.

• Design review. This involves examining the overall principles of the architecture
advanced in Chapter 2 and Chapter 3, and combining that with the description in
Chapter 4 of the actual application fielded.

• Code review. This involves actually reading the code and looking for weaknesses.

While it is certainly possible that someone will subject Yenta to black-box analysis,
we have no intention of doing so here; there seem to be much better options at our dis-
posal. And, unfortunately, formal methods are quite attractive, but typically are not
feasible for entire applications. They can be quite helpful in evaluating particular net-
work protocols (such as SSL) or particular cryptographic functions (such as DES), but
are less likely to reveal whether a particular application correctly implements the
design which has been formally analyzed, due to the time and effort required to do
rigorous analysis of a large body of code. They can also miss incorrect design
assumptions, such as incompleteness of the threat model.

Yenta’s design, and the design of the architecture of which it is a part, are public
information. This encourages review. In addition, the actual source code of Yenta is
also available, for a number of reasons, including pedagogy, increasing the portability
of the application, and the presumption that openly-available code is itself a social
good. However, one of the most compelling reasons to make code for an application
such as Yenta public is to increase the chances that others will find weaknesses.

The strategy chosen for Yenta is twofold:

Parameter Sum Min Max Average Std dev

UI pages fetched 2925 11 648 139.2  143.1

Help pages fetched 264 1 32 12.5 6.9

Documents scanned 12773 0 8388 608.2 1779.5

Number of interests 2592 0 1406 123.4 312.9

Signatures verified 353 0 75 16.8 22.5

Clusters joined 89 0 50 4.2 10.9

IY opcodes sent 3032 0 811 144.3 216.2

IY kilobytes sent 28854 0 10770 1374.3 2715.9

Minutes of operation 117719 0 34122 5605.7 10287.1

Figure 16: Some selected statistics from fielded Yentas.
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• Make it easy to vet Yenta’s code

• Give people incentives to do so

The first of these is partially accomplished by Yvette, as described in Section 3.4.4.
Briefly, Yvette encourages collaboration among people who are interested in evaluat-
ing a large body of code, by enabling them to divide up the work, write reviews of
small sections, and review the work of others. Yvette also enables those who are less
skilled to nonetheless peruse the reviews, by showing how much of the entire corpus
of code has been reviewed and, for sections that have received several reviews,
whether those reviews have been generally positive or negative.

There are several possible incentives for others to review Yenta’s code. Making Yenta
more secure is clearly a social good, at least among those reviewers who share the
author’s political agenda. Further, as is commonly the case in software projects whose
source is publicly available, those who make particularly important contributions
either to the code or its review are often rewarded by improvements to their reputation
in that social group.

Yenta also tries directly to appeal to other programmers for review. The following
rather long insert is an excerpt from the web pages which announce Yenta, and is
indicative of the sort of things we are asking others to look for:

Please help improve Yenta’s security, so that all of its users may benefit. We
are offering incentives for finding major flaws. To be most helpful to us, and
hence to do the most to improve Yenta’s security, please read all of the topics
below. They cover:

• How to comment on the code.

• What’s in it for you.

• What counts as a flaw.

Commenting on the source code

Your easiest starting point is probably to critique Yenta’s source code directly.
Yenta’s current source code is available via Yvette, which allows collaborative
critique of a body of code: each person may make comments on a single func-
tion, a whole file, or an entire subtree of the source, and others may view these
comments. This allows dividing up the work.

Since it is expected that most possible flaws will concern some well-defined area
of the source code, you should remark on it at the appropriate point in the source
tree that Yvette gives you. If you think you have found something particularly
serious, you may want to send mail to bug-yenta@media.mit.edu telling us what
you found. Please see also our description of what counts as a flaw.

What incentives we have for you

There are several incentives available to encourage people to improve Yenta’s
security:

• Community good. This is worth doing for its own sake, because you are helping
everyone who uses Yenta to be able to use a system that will not inadvertently ex-
pose personal information, will not crash, and will be useful to its users.

• Public recognition. All comments about Yenta that have been given to Yvette
are available to everyone to read. Particularly insightful comments may also be
mentioned in various acknowledgments when papers about Yenta are published.

• Goodies. If you are the first to report a particularly serious security problem in
Yenta, we’ll give you something. If you’re local, this might be dinner. If you’re not
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local, it might be something else appropriate. If you care strongly about getting
something, then please comment in Yvette (if there is a particular area of the code
that is affected), and remember to send us mail. Please note that our judgment of
what counts as “serious” is absolutely at our discretion. But don’t worry—we’ll
be fair. It is quite probable that there are things missing from the description below
(perhaps we forgot one of the cases that don’t count in the threat model descrip-
tion); this doesn’t mean we owe you dinner if you find something we don’t think
it a major flaw, but which we didn’t mention. On the other hand, we’d still like to
hear about it—if nothing else, to correct our description.

What counts as a flaw?

This is a description of our threat model. In other words, what sorts of flaws are
we looking for?

Security bugs versus other bugs

• We’re interested in all bugs... so please, if you spot something in the source
which is a bug in functionality, even if it does not have security implications,
please comment about it in the source and also send us mail at bug-yenta@me-
dia.mit.edu. If you trip over a bug while using Yenta, but don’t know where it is in
the source, send us mail and at least let us know.

• ...but we’re most interested here in security bugs. Not only are undetected se-
curity bugs dangerous to users, but they are likely to go unreported unless some-
one actively looks for them. After all, a bug in functionality, such as Yenta crash-
ing, or doing the wrong thing with a command, is likely to be noticed by the user
who experiences it, but a security bug could be totally silent and yet deprive all
users of their privacy.

What sort of attacks are we talking about?

• Things which don’t count.

• Denial of service doesn’t count. In other words, if someone can arrange to
make your Yenta do nothing, either by overloading it, running it out of resources,
or attacking the connection of its machine to the net, that’s outside of the scope
of what Yenta is designed to survive. Of course, if you see a simple way to pre-
vent a denial of service which is specific to Yenta, please let us know.

• Careless users don’t count. Users who deliberately choose poor passphrases
will compromise their own security. Yenta can’t stop them. Similarly, even
though Yenta takes care to arrange a very strong SSL connection between the us-
er’s browser and Yenta itself, if the user is running their web browser with an in-
secure connection between their keyboard and their web browser, Yenta cannot
possibly know this, and cannot prevent it from occurring. This can easily happen
if the user is using X—with the keyboard and screen on one machine, and Yenta
running another—and is not using SSH or some similar protocol between the
two machines. Similarly, if the user is running a crippled browser that supports
only 40-bit session keys, Yenta is willing to talk to the browser, but this connec-
tion is only secure against attackers without many resources.

• Attacks by root on the same machine don’t count. A superuser on some-
one’s workstation can read any bit of memory, can substitute compromised ver-
sions of binaries for formerly good ones, can install trojan horses that capture
every keystroke the user types before it gets to any application, and so forth.
Yenta cannot hope to avoid such attacks. Note in particular that Yenta is more
vulnerable to a memory-sniffing attack than programs like PGP, because Yenta
must remember the user’s private key at all times—PGP need only remember it
for the instant that the session key is being encrypted. And any attack that com-
promises the binary—whether on the local workstation, or by altering NFS data
if the binary is fetched over the network—also cannot be countered.

• Byzantine failures don’t count. In other words, if you surrounded some in-
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nocent victim’s machines with only machines running bogus, compromised ver-
sions of Yenta that are all under your control, you could certainly figure out what
the user is interested in, and probably do a lot worse damage as well. Yenta ex-
plicitly assumes that all the rest of the Yentas on the net are not evil. One or two
is okay, but a vast majority is not.

• Savant index files don’t count. Yenta stores its crunched, vectorized informa-
tion about your mail in a binary but unencrypted form on disk, in your ~/.Yenta
directory. Although the directory is read-protected against all but its owner, this
is not secure against an attacker who can read the filesystem. Since this informa-
tion originally came from plaintext files which are also in the filesystem, it is as-
sumed that this approach does not compromise the user’s privacy any more than
it already was. Note that Yenta’s other saved state, such as the user’s private key,
his stored conversations, and so forth, are encrypted and never appear on disk in
the clear, even for a moment.

• Attacks on the maintainers’ machines don’t count. Even though the distri-
butions are cryptographically signed, and even though the source code is avail-
able via Yvette, there is certainly the potential for corrupting the actual code be-
ing distributed, by attacking the machines upon which Yenta is developed. While
it would be possible to secure these machines better, doing so gets in the way of
getting work done, and Yenta is a research project. So you are not allowed to at-
tack the actual source—or our machines!—and then claim a victory. Just don’t.

• Traffic analysis doesn’t count—yet. The current version of Yenta uses point-
to-point IP connections when passing a message from one Yenta to another. Lat-
er releases will employ a broadcast-flood algorithm, either by default or on re-
quest, to make it harder to tell where the real endpoints are of a communication.
This makes it more difficult for an attacker who cannot monitor every link in real
time to know which pairs of Yentas are exchanging a lot of traffic (and hence
which may have users who are interested in the same things).

• Things which do count.

• Problems in Yenta’s cryptography. This could be insecure encryption
modes, vulnerabilities in the protocols used between Yentas or in the way that
permanent state is stored on disk, and so forth.

• User confusion that leads to exposure. If Yenta does something that causes
a user to be a confused and inadvertently reveal something that he did not wish
to, that is a bug. But this must be Yenta’s doing—not a con game perpetrated by
another user, for example.

• Failures of anonymity. Yenta tries to keep the connection between an individ-
ual user’s true identity and his Yenta identity unknown, unless the user deliber-
ately divulges that information. If there are easy ways to defeat this, we need to
know. However, see the note about traffic analysis not counting, so far—a later
release will fix this.

• Spoofing. If one user can masquerade as another, complete with valid-looking
attestations which are fraudulent, this is certainly a bug.

• Missing items from the description on this page. We may be missing exam-
ples, either in the listing above of threats which Yenta is just not designed to han-
dle, or in this listing of possible places to look for problems. If so, please let us
know, so we can update the list. This helps two sets of people: Yenta’s users, who
get a more accurate picture of what Yenta can and cannot do, and Yenta’s review-
ers, who won’t waste their time investigating a vulnerability which we consider
to be outside of Yenta’s scope.

5.7 Risk analysis Let us now turn our attention to an analysis of Yenta’s residual risks, using the criteria
in the previous section as guidelines. Where are the weak links? If Yenta is to be
trusted, is it actually trustworthy?
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5.7.1 Denial of serviceCertainly the most obvious weak link in the design is that of denial of service. We
have explicitly stated that this is not a problem we are trying to address, but how well
do we sidestep it anyway? Let us first ignore any denial of service which takes down
the actual host upon which an individual Yenta is running on, or its network connec-
tions anywhere else. We shall also assume at the moment that we are talking about an
attack on a single user’s Yenta—not on all Yentas. Assuming that the underlying host
and its network are functional, how vulnerable is Yenta to a denial-of-service attack?

Single YentasThere are several ways to mount such an attack. One involves simply opening a con-
nection to a Yenta and giving it an infinite list of possible interests, or making one par-
ticular interest of infinite length. Yenta throttles its reception of any network
connection to a fixed maximum number of bytes per task timeslice, hence other tasks
will not be starved even if another Yenta attempts to monopolize its attention. In addi-
tion, Yenta will start dropping interests if the list from any given Yenta is too large,
and will drop additional vectors of any one interest if it exceeds a threshold.

It is certainly possible to make Yenta’s rumor- or cluster-caches useless by inventing a
very large number of unique-seeming Yentas—e.g., for example, with a single process
that keeps claiming to have a different Yenta-ID for every connection—and then bom-
barding a stream of connections. This can certainly fill the rumor cache with a large
amount of junk, making this particular Yenta’s referrals useless to other Yentas. It can
also fill the rumor cache with known junk, hence compromising the digital mix
described in Section 2.8.3; we shall have more to say about that below.

If the attacker can deduce the local Yenta’s interests accurately enough, such a bom-
bardment might conceivably also fill its cluster cache with entries which all corre-
spond to the attacker’s identities. This can effectively cut off the Yenta from real
clusters that share its interests, and resembles the case of a Byzantine attack, but
mounted from a single host. Whether or not this attack can succeed also depends on
whether the local Yenta is using the attestation system to reject other Yentas which do
not have appropriately-signed attestations.

Defending against such attacks can be quite difficult. One easy solution, which is not
currently implemented in Yenta but which would be quite simple to do, involves throt-
tling the number of unique Yentas accepted from any given IP address in some time
interval—for example, no more than 100 unique YID’s from any given IP address in a
month. This raises the workfactor for the attacker considerably, since the attacker
must now control many more hosts. [IP spoofing is not a reasonable approach for the
attacker, since the communications protocol depends upon two-way TCP traffic,
including a cryptographic challenge, which means the attacker must see return pack-
ets. And yet we have also assumed that the host’s underlying network is working; this
means that routing is working and the attacker therefore cannot simply be sitting on
the host’s local interface, or on the local wire, and modifying all packets—this counts
as the network not working.] Note that we cannot throttle the number of YID’s per IP
address to only one unless we wish to break the ability to use Yenta on a timesharing
system—if we were to do this, every Yenta connecting to the local Yenta from the
timesharing host, except the first would be dropped as an attack.

All YentasDenying service to all Yentas is a trickier task. Assuming that the distribution is not
corruptible—meaning that both the signatures on the distribution and the evaluations
in Yvette are secure—one possibility would be to spuriously advertise some critical
problem in Yenta to its user community, perhaps via a mailing list. If this ever
becomes a problem, all mail from the maintainer to Yenta’s users will have to be digi-
tally signed so they may check it for authenticity. At the moment, this is a fair amount
of overhead, so such messages remain unsigned.
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Because both the debugging logger and the statistics receiver are expected to occa-
sionally be down, all Yentas can cope with the results and will not fail no matter how
long these servers are down. Hence, even a total failure of these servers will not bring
down all Yentas. Further, since the communication from Yentas to the central server is
essentially one-way at the level of the Scheme protocol sent, there is little opportunity
for the server to freeze a Yenta via an inappropriate response.

It is possible that there is some way to subvert the SSL implementation of the statis-
tics server—e.g., at a protocol level below the actual Scheme forms exchanged—such
that it causes a Yenta which is trying to log statistical information to freeze—for
example, by exploiting some bug in the implementation which causes SSL negotia-
tion to hang if the server simply halts at the appropriate moment. If the C code of the
SSL implementation is frozen, Yenta will freeze, because no other tasks will ever run.
Since all Yentas eventually attempt to log to this server, this will freeze them all. It is
currently unknown whether such a vulnerability in the SSL implementation exists. A
possible solution, if it does exist, would be to wrap a timeout around all SSL session
negotiations and simply abort any tasks whose timeout expires. This can cause each
Yentas to become momentarily sluggish each time it tries to log, but this should not be
a major performance problem if the timeout is not excessive.

5.7.2 Integrity and 
confidentiality—protocols

As discussed in Section 5.6 above, it is believed that the most serious risk to either
integrity or confidentiality of the data exchanged by Yentas is that of poor security
practices by its users. This ranges from running Yenta on compromised machines to
picking poor passphrases to using web browsers which only allow 40-bit keys to typ-
ing passphrases or otherwise using the user interface across insecure links—e.g., run-
ning a web browser via X and then using an insecure connection between the X server
and the X client. Such mistakes and poor practices are incredibly common and very
difficult to guard against—for example, it is essentially impossible to know for sure,
from a program’s point of via, whether any given X connection is or is not secure,
since the program must know more about the environment and the threat model than
can be sensibly expected. Similarly, while Yenta can trivially simply refuse to talk to
any web browser which fails to use encryption with enough bits in its keys, one can
make the argument that this might needlessly disenfranchise users who are using
Yenta in a way that even 40-bit browser keys are perfectly acceptable—such as the
case wherein the browser is running on the same host as the Yenta and no bits are tra-
versing the network.

The problem of weak 
passphrases

Yenta does not currently make any attempt to ensure that the passphrase chosen by the
user is at all secure. This would be a relatively simple addition, but raises important
concerns about users forgetting passphrases if they are forced to be long. Most users
find themselves unable to remember an 80 to 160-bit string, even expressed as a pass-
phrase of random words, on first sight. (It is commonly accepted that most humans
can only commit about one bit of information per second to long-term memory; this
has obvious implications for the long-term memorability of a newly-generated pass-
phrase which is random enough to be unguessable by someone else.)

Maybe users should write 
them down?

The best solution to the passphrase issue might actually be to encourage users to
write down their passphrases somewhere, such as on a scrap of paper in a location
known to the user. This is heresy to the traditional security establishment, but certain
threat models may make it sensible. For example, many users may be in an environ-
ment where local users can become root on their workstation (e.g., system administra-
tors) and no passphrase will protect such users. However, nonlocal users may be
arbitrarily distant and may have no idea where the user is physically. Given such an
attacker, a written-down passphrase is no less secure than one which is not—but writ-
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ing down the passphrase may encourage the user to pick one that is sufficiently long
as to have a useful number of random bits in it.

5.7.3 Integrity and 
confidentiality—spies

Assuming that the basic cryptographic protocols are adequate, and that the user is
using Yenta safely—no insecure browser connections, a good passphrase, and so
forth—there are still underlying issues of confidentiality in particular. Consider the
denial-of-service attack described above in Section 5.7.1, in which a single Yenta is
targeted by an effectively unlimited number of bogus other Yentas, all under control
of a single attacker. Whether or not Yenta throttles unique YID’s per IP-address and
unit time, there is some combination of resources which is guaranteed to cause an
arbitrary proportion of the local Yenta’s communications to all be with the attacker’s
Yentas. At this point, the local Yenta has been captured and is in a case explicitly dis-
allowed by our criteria in Section 3.2.4. How bad is the damage?

In the simplest case, this attack breaks the digital mix described in Section 2.8.3. This
means that, when the local Yenta exchanges interests with the attacker’s Yentas, any
interest which does not come from the attacker’s supplied interests is known to belong
to the local Yenta. This means that these interests are no longer plausibly deniable.

Trusted attestations may 
be the only feasible 
solution

This is quite a difficult attack to defend against. We cannot even attempt to spread
information by insisting that third-party Yentas do the comparison of each interest,
and then collating their responses, because all such third-party Yentas are themselves
still under control of the attacker. It appears that the only obvious solution to this
problem is to have the local Yenta insist that every Yenta which it talks to possess
some attestation signed by a party which can be reliably known to not be the attacker.
Of course, this is very likely to dramatically reduce the number of other Yentas that
will be listened to by the local Yenta, perhaps to zero, but there seems little choice—if
everyone you talk to is lying to you, and yet you feel compelled to tell someone of
your interest in something, you are in trouble. Your only alternative may to figure out
how to get someone you already trust to vouch for someone else.

5.7.4 ContagionIs a network of Yentas vulnerable to contagion? Such an outcome could allow a mali-
cious attacker to disable the entire system; it also allows cases in which the system
might simply fail all on its own, by accident.

While it does not appear that there is any potential for such a thing, bizarre failures of
this type have been seen in the past in other systems [121]. Yenta never accepts any
code fragments from elsewhere, which should minimize the chances of a true virus
being able to propagate. For example, when reading a Scheme form from a network
connection, Yenta uses a custom-written parser that disallows almost all Scheme
forms except lists, strings, numbers, and booleans. This guards against an attack
which is otherwise possible against both Common Lisp and Yenta’s particular version
of Scheme, in which the attacker uses the #. reader macro—which means evaluate this
form at read time, not load or compile time—to cause the machine parsing the form to
execute arbitrary code. [For example, if Common Lisp calls read on the form (+ 2 3
#.(malicious-code-here) 5), it will execute malicious-code-here before reading the
rest of the form. Even if eval is not called on the result of the form (and hence the
addition is not performed), the malicious code will have been already run. Common
Lisp has the with-standard-io-environment form, which will inhibit #., but SCM does
not and hence requires a home-grown solution to this problem.]

Yenta does not use this custom-written, safe parser when reading forms from the file
in which is saves its permanent state. However, since this file is encrypted, an attacker
would have to break the encryption to cause Yenta to execute arbitrary code, which
seems like a much more difficult problem than simply causing the user to run the
wrong application via a wide variety of easy attacks involving subverted hosts and the
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like. Hence, attempting to propagate a virus in this manner would require manually
compromising each host in order for it to succeed, at which point it can hardly be said
to be a virus at all.

Deliberate shutdown There was some thought given, early in the Yenta project, to having a global shutdown
code installed in at least early versions of Yenta as released. Such a code would be
intended to halt all Yentas reliably, in case the Yenta network protocol behaved badly
and threatened the usability of the network infrastructure. The intended method of
action would be to have each Yenta first broadcast the shutdown code to all neighbors,
and to then halt for, e.g., no less than a week, before allowing itself to be run again.
The code itself would be cryptographically signed using a private key known only to
the implementors, and whose public half would be installed in every Yenta. It would
contain an expiration date, after which any Yenta would ignore the stop code, such
that it could not permanently kill all Yentas forever. And, to be extra safe, the code
would presumably be implemented using a threshold scheme, such that several indi-
viduals would have to collaborate to reconstruct the required key to emit the code.
Not only would this guard against an unfortunate mistake, but having several of the
individuals be in different sovereign countries would aid in preventing a duress attack,
in which the implementor was forced through legal or extra-legal means to disable the
Yenta network—presumably by some government actor that wished to suppress anon-
ymous encrypted speech.

Such a shutdown scheme would be a deliberately-installed method of destroying the
Yenta network, at least for a time, due to an intentional contagion. Early results from
Yenta indicated that the potential for a network meltdown due to Yenta was low, while
the hazard of ever having such a mechanism installed in Yenta was high. Given this,
and the implementation work required to install such a feature—and to verify that it
would act correctly when triggered but would not trigger falsely—the feature was
intentionally omitted from the fielded system.

It is nonetheless still entirely possible that there exists some pathological interest,
message, or attestation which will be propagated to other Yentas and which causes
any Yenta possessing it to malfunction. Such an outcome is exactly analogous to the
ARPAnet collapse described in RFC528. No such mechanism is currently known. It is
hoped that careful code review, for example via Yvette, may discover any such mech-
anisms before they are accidentally triggered. It is also hoped that such a malfunction
will at least allow logging data to be returned to the implementor; this might allow the
issuance of an updated version before all Yentas are crippled. However, in most sce-
narios it may be that the logged data would be insufficient—since interests, messages,
and many attestations are not returned to the logging receiver, a pattern-dependent
pathology in them will not be returned. Only when the implementor’s Yenta failed
would the actual pathological case be made available for inspection.

5.7.5 Central servers Every central server in the fielded Yentas represents a vulnerability. As discussed in
Figure 2.13, for example, the mere existence of the statistics receiver represents a
great risk of accidental information disclosure if Yenta logs some identifiable infor-
mation by mistake. In addition, the existence of such a server represents a user-per-
ception risk—some users may not be interested in any protestations that such a design
is safe, may distrust it on principle, and may not user Yenta for that reason. Given the
sorry results from trusting similar sorts of assertions in other systems, it would be
hard to blame them for such a stance.

The bootstrap server also represents a small risk. In particular, a malicious takeover of
the server could cause all newly-started Yentas to be forced to talk to a particular set
of other Yentas—presumably those under the control of whoever took over the boot-
strap server. This is not guaranteed to work, since each Yenta that starts first broad-
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casts on the local wire and only ask the central server if not enough responses are
received, but it may succeed against Yentas that start in environments where few other
Yentas are already running. Similarly, someone who can control answers on the local
wire can subvert a newly-started Yenta into only using a particular set; since such an
attack can only affect new Yentas on a particular wire segment, it has less potential for
widespread mischief than taking over the bootstrap server.

The debugging server presents few risks, save that it is possible that a bug in Yenta’s
implementation—such as logging the value of some variable that could reveal some-
thing about the user’s interests or the contents of conversations—may leak private
information. However, Yenta’s use of this server is rare. Because communication with
this server is strictly one-way, from Yentas in the field to the server, it seems unlikely
that taking over the server could accomplish much besides inconveniencing the imple-
mentors (and, secondarily, making it impossible for brand-new Yenta users to auto-
matically sign up for the couple of mailing lists which talk about Yenta; they could
still do so manually even in this case).

5.7.6 Nontechnical risksYenta faces some nontechnical risks which might also impact its utility. For example,
how exactly to use the attestation system—what might be useful to say about oneself,
for instance—has been left deliberately underspecified. In part, this is an experiment
to see how people do decide to use the attestation system, but it may backfire—with-
out sufficient guidance, users may not use it at all, or they may use it in such idiosyn-
cratic ways that attempting to use the attestation system for automatic filtering of
incoming messages becomes very difficult. (This is especially true given the rather
user-unfriendly choice in current Yentas of requiring such filtering to user regular
expressions; regexps are not expected to be understood by most users and it is hoped
that a later version of Yenta will use something friendlier. How exactly to do this is a
matter of some research.) Note that, even if users cannot use regexps in any useful
way to automatically reject particular Yentas—hence leading perhaps to a spam prob-
lem—they may still manually add Yentas to their rejection lists, thus killing spam
from any Yenta that has sent it even once. They may also, of course, still read attesta-
tions themselves and use their own judgment about whether to accept an introduction
or a message from someone based on their own reading.

It is conceivable that Yenta may run afoul of patent issues. This is generally a problem
in software systems these days, and especially problematic with those employing
cryptography. It is also rumored to be a method of attack from corporate interests
against free software generally, given that most authors of free software do not have
legal counsel and certainly to do not have the war chest of patents that large compa-
nies tend to have. This is, alas, a risk that is not unique to Yenta.

Because Yenta facilitates anonymous, private speech, it is likely to irritate many gov-
ernmental and even nongovernmental actors who have vested interests is discouraging
such speech. (For example, the European Union has recently proposed—though not
yet adopted—prohibitions against electronic anonymous speech [48]. This issue
comes up frequently in the United States as well, despite its Constitutional protection
in other media [65][120].) However, barring changes in existing law, especially in the
United States where Yenta is being developed and fielded, it seems unlikely that
excessive coercive force could be applied either to Yenta’s users or to its implemen-
tors.

5.8 Other 
applications of this 
architecture

Let us now turn our attention to a brief evaluation of how the underlying architecture
employed by Yenta might be used in several other applications. The questions we are
answering here are: How well does the architecture support these applications? Where
might the architecture need to be extended? Compared to more traditional ways of
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implementing these applications, does this architecture offer unique advantages? This
discussion is necessarily speculative—none of these sample applications have been
implemented, although many of them would not be difficult to do.

Web pages One example would be an application might use the contents of web pages that have
been fetched by the user as the input to the document comparison engine, rather than
the contents of the user’s own files or mail as is currently done in Yenta. This applica-
tion bears some resemblance to the Webhound/Webdoggie system [103], although it
is actually a superset—not only is it distributed, unlike Webhound, but Yenta incorpo-
rates an interpersonal communication system which Webhound lacks. 

Building such an application seems relatively easy. The minimal-work approach
would be to use some other external program, such as the wget program, to fetch all
web pages in the user’s bookmark list, and then simply point Yenta at the resulting
collection of files. Another approach, more convenient for the user but slightly more
work for the implementor, would add the necessary code to Yenta to enable it to fetch
web pages directly and feed them into Savant. Whichever approach is chosen, perfor-
mance would probably be improved if the Savant comparison engine was augmented
to understand more about the structure of the web page—such as attempting to com-
pare web pages by number of outbound links to foreign sites, or number of included
images, and so forth—because the Webhound/Webdoggie research showed that doing
so improved the performance of that system as well. (Clearly, simply importing the
relevant part of Webhound’s page-comparison code would be a straightforward way
to go about this.)

This application seems well-adapted to the architecture described in Chapter 2. It has
considerably advantages over the original Webhound implementation, because users
no longer have to worry about some central site knowing which pages they browse,
and also enables them to easily share information about web pages by simply talking
to each other—Webhound only suggested pages, with no explanation and no easy
way of contacting the other user(s) who may have seen those pages already.

Database queries Another example is an application that attempts to build groups of people who do
similar database searches—a sort of community-builder that might be used within a
single company that does database mining. Such an application could help inform
those working in this hypothetical company about other groups or divisions which
seem to be duplicating work, or which allow people doing similar searches to pool
their resources. Implementing this application requires removing Yenta’s existing
document comparison engine—Savant—and implementing some new comparator
which, given two database queries, can compute some similarity metric between
them. It would also require some trivial modifications to change the printed represen-
tation that Yenta uses to describe an interest from a short vector of keywords to, per-
haps, the actual database query that was issued.

Assuming that it is possible to develop some metric that can suitably compare data-
base searches, then this application, too, should work well given the framework of
Chapter 2. If used only within a company, the anonymity and privacy features pre-
sented could well be overkill, but perhaps not—intracompany politics and competi-
tion can sometimes be ugly. And the attestation system might be used to ensure that
no information is somehow shared with rivals—consider a system in which the agents
only talk to others which display attestations that have been properly signed by some
well-known entity in the company, such as its human-resources department. This
turns the web-of-trust architecture presented by the attestation system into the sub-
strate for a more hierarchical, certificate-authority-based system, and enables a high
degree of trust that any given agent really does belong to a user who works for the
company. Properly done, this assurance can be much strong that trusting to a firewall
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or to the domain-name system, both of which tend to be easy to subvert in practice
[128][161].

Romantic matchmakingWhat changes would be involved in making Yenta a true romantic matchmaker—an
application that was explicitly designed for dating? On the surface, this seems both
obvious, simple, and well-adapted to Yenta—for example, the attestation system
might serve very well in helping to controllably share certain crucial information
between prospects, while the underlying cryptographic security and nym system can
help to control undesired information flows before partners commit to a physical
meeting, if they ever do.

But a closer look shows that this is not quite the problem that the original Yenta was
designed to solve, for a number of reasons. Yenta assumes that shared interests are
sufficient to bring people together, but romantic matchmakers cannot make that
assumption—indeed the phrase opposites attract may be quite relevant for many
users. In part because of this, romantic matchmakers often require each user to spec-
ify a profile which describes an intended match, and this profile may bear little resem-
blance to the user creating it. This lack of self-similarity—we may be attempting to
match users based on characteristics they do not share—breaks a naive implementa-
tion of the clustering algorithm described in Section 2.8. In addition, a handmade pro-
file may lack the ability to do hillclimbing, because such profiles often consist of very
few words (e.g., 10 or 20) and not the large number of words—and hence long vec-
tors—that document summaries such as Savant tend to generate. One possible solu-
tion to this might be to instruct potential users to instead pick, say, online works of
one sort of another—web pages, book chapters, and so forth—that could be of interest
to a potential mate. A profile-creation step which requests large amounts of informa-
tion in ways that a comparison engine can partially order may also help; this would
require careful thought and correctly-structured data. But how do we deal with the
opposites-attract problem?

For concreteness, let us name our potential users Harry and Sally, and consider some
ways out of this dilemma if Harry is looking for a mate who is unlike him, and Sally is
also. Assume that Harry wants someone who is outgoing and friendly, but is himself
curmudgeonly; likewise, assume that Sally is outgoing and friendly, but wants a cur-
mudgeon. They would be perfectly matched, if only they could find each other. How-
ever, if Harry creates a profile that looks for outgoing, friendly people, and Sally finds
it, she will incorrectly assume that Harry himself is not a curmudgeon, and will reject
the proposed match.

One way out of this might be to modify Yenta such that it understands explicitly the
connection between pairs of interest clusters, such that Harry Yenta can cluster itself
into a clump of other curmudgeons, while simultaneously clustering itself into an out-
going-and-friendly cluster. Sally’s Yenta could presumably do the same. If both Yen-
tas then understood the meaning of each finding themselves in both clusters
simultaneously, and if each Yenta kept track of which cluster represented a profile of
its own user and which cluster represented a profile of the mate being sought, then it is
possible that the opposites-attract problem might be solved. It does not seem, at least
at first glance, that this is a prohibitively difficult programming project, although it
does seem to be the sort of thing that might require extensive tuning and a careful user
interface so as not to confuse its users.

Electronic commerceLet us now consider implementing some sort of ecommerce system, in which buyers
and sellers wish to find each other in order to exchange goods. The first order of busi-
ness involves creating some sort of comparison metric that can translate some
description of goods or services into something upon which a partial order of similar-
ity may be imposed; otherwise, clustering cannot use hillclimbing. One potential
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approach to this problem, depending on the domain, might be to embed products in a
hierarchy of related products, and to measure similarity between two types of prod-
ucts by comparing the distance between points in the hierarchy. This might allow
clustering to build groups of buyers and sellers which are interested in similar prod-
ucts.

The next issue concerns what to do once a cluster has been formed. One approach
might be to have buyers and sellers simply broadcast messages, using the messaging
system described in Section 2.10. The message sent may either be human-to-human,
as in Yenta, or algorithmically generated, for example some sort of open-outcry bid-
ding system—there are no doubt a large number of potential algorithms which could
take advantage of such an architecture. Once a buyer/seller pair are aware of each
other’s existence, they may of course also simply send messages directly to each
other, again as human-to-human or in some sort of automated bidding algorithm.

The attestation system could be used to excellent effect in such a system. For exam-
ple, buyers who are happy with the seller’s performance may volunteer to sign attesta-
tions from the seller which verify that the seller is trustworthy. (Recall that
attestations, being kept by their owner, will presumably not be kept if uncomplimen-
tary, and hence buyers will be unlikely to be able to say negative things about sellers
because sellers will not offer such attestations in the first place; see Section 2.11.)
Buyers might themselves have attestations which sellers can sign—perhaps as part of
some other element of the transaction—indicating that the buyer has paid for prior
purchases.

The support of this architecture for private, authenticated message exchange, com-
bined with the attestation system, makes the architecture described in Chapter 2 an
attractive choice as the substrate for an ecommerce system. The most difficult part of
the design which is unique to the architecture—as opposed to, say, which bidding
strategies to use and so forth—is likely to be support for forming clusters in the first
place. If there is no natural landscape of similarity which can be used to support the
hillclimbing, this approach may not be acceptably efficient.

5.9 Motivating 
adoption of the 
technology

Designing, implementing, and fielding a decentralized application has many chal-
lenges. While doing so can have important benefits for users, it can be significantly
more difficult for implementors than a centralized system, for a number of reasons:

Challenges • It is much more difficult to update a large number of applications in the field than
a single, central application. This implies that the system must be closer to produc-
tion quality—not alpha or beta—before first ship.

• Because the application must be significantly more robust at first release than is of-
ten observed, it may take longer for a given development staff to field such a system
than many centralized systems. For uses, such as in businesses, where time to mar-
ket is the dominant factor, such a delay may be a major liability.

• The application may have to be more complex to correctly handle the inevitable
mix of versions that will be present in the field.

• There exists a significant issue of education, of the user base and of others who
must talk about or interact with the system, because truly decentralized systems are
still unusual. During deployment of Yenta, for example, even sophisticated users
continued to ask, “Where’s the server?” repeatedly until they understand how the
system operates.

Solutions These issues need not be fatal. For example, many centralized systems such as web-
based ecommerce sites rely on an already-implemented toolkit, for example the
Apache web server [7], and do a relatively small amount of additional work to add
whatever functionality is required to make their sites into a business. A similar,
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widely-available toolkit for building decentralized systems—such as a commercial-
strength infrastructure that implements the basic architecture described in Chapter 2
and Chapter 3—could go a long way towards enabling rapid implementation and
deployment of such decentralized systems. In addition, such a prebuilt toolkit might
help to avoid some of the more common errors in the implementation and use of cryp-
tographic algorithms and protocols, since the work required to design and verify them
can be spread across multiple applications and multiple reviewers. While it is still
possible for some other part of the deployed system to compromise the otherwise-
good crypto, at least there is that much less of the design and implementation that
must be written and checked.

Motivating businessesA more serious concern, at least for business users, is the large value of data-mining
to many businesses and their reliance upon such data as a revenue stream. Indeed,
with the falling price of computers, some businesses are willing to give away a com-
puter valued at several hundred dollars for free in return for the ability to collect vast
amounts of detailed personal information from their users as the computer is being
used [85]. In this case, even if a decentralized system offers technical advantages,
such as robustness and insulation from the labor of answering subpoenas, and even if
the system is viewed favorably by users, the business must forgo a revenue source in
order to be socially responsible. This is a tradeoff that few businesses are apparently
willing to undertake.

Clearly, if the financial motivation is sufficiently large, almost all businesses will
ignore any scheme that protects their users’ privacy. Such a motivation would have to
factor in the possible loss of goodwill from customers, the time and effort required to
answer subpoenas, and the possibility of enforcement action from government actors.

Thus, the solution for motivating businesses to do the right thing—in this case, pro-
tecting the privacy of their users—must eventually come down to making it too
expensive for them to violate their privacy instead. This is very unlikely to be a purely
technical solution, given the example above where it is obvious that detailed informa-
tion about particular users may be quite valuable commercially. Instead, businesses
must either lose customers, and hence revenue stream, to others which are more pro-
tective of their customers’ civil rights, or they must be forced to be more protective
via legal action.

Given a scenario in which a privacy-protecting system gets to market at approxi-
mately the same time, and costs a business less—for the various robustness reasons
mentioned elsewhere, for example—it is also in the interest of that business to edu-
cate its customer base about why they are getting a superior deal in terms of their civil
rights. Such an education and advertising campaign, if properly handled, may pay off
by discouraging customers from using competing systems that are not so protective.
While it is historically true that such campaigns are difficult and often do not motivate
a large proportion of users, it is always possible that such attitudes will change—for
example, if well-publicized privacy disasters continue to emerge.

Legal remedies are another option. At the moment, the United States in particular is in
a poor position in protecting privacy rights, as discussed in Chapter 1. One reason is
certainly the lack of public awareness of the problem. Another may be the sense that
the situation is in some way inevitable—that the use of computers to handle personal
information must necessarily lead to reduced privacy. It is hoped that the results of
this research will serve as an example that this need not always be so. If this example
becomes widely known, it may influence legislative attitudes by making it obvious
that many businesses have no technological justification for their actions. This may
thus lead to legal pressure on businesses and other actors for the protection of their
users’ rights.
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5.10 Future work Having a large number of Yentas in operation provides several intriguing opportuni-
ties for further study. We shall investigate some of these here.

5.10.1 Sociological study Any new technology can benefit from studying the way in which people use it. Yenta,
in particular, is an unusual combination of matchmaking service, mail system, collec-
tion of newsgroups, document summarizer, and reputation system, among others. 

One obvious approach involves exploring the sorts of groups that form, and whether
users find that they deliberately include or exclude certain types of documents to try
to find particular such groups. Since there is no toplevel ontology of which groups
exist, the prevailing social structure is more like the one that exists in everyday, non-
networked life—one cannot simply ask, “What are all the interest groups in the world
that I might possibly become a member of?” because there is no such central registry.
Yenta shares the same characteristics. Yet users who hear through channels outside of
Yenta about particular groups may be tempted to try to join them. If Yenta does not
support this explicitly, users will likely find a way—but how?

Yet another possibly-fruitful direction concerns the reputation system. What will peo-
ple say about themselves? What will (and won’t) get signed by others? What social
signalling systems will evolve? Will these systems span clusters or not? What sorts of
filters will people write to take advantage of the reputation system—or will they use it
only to evaluate potential conversational partners? What are the patterns of signa-
tures—can we infer anything about social organization by who signs whose attesta-
tions? The range of possible questions is very large, but could be sociologically
interesting to answer.

5.10.2 Political evaluation Yenta also has a political dimension. Will it change the way people tend to think of
privacy and computer-based processing of personal information? Will it influence sys-
tems designers to take civil liberties more into account? Will the decentralized nature
of the architecture lead to more such architectures, even in cases where it is, for exam-
ple, robustness, and not privacy, that is most at issue? Will the transparency goals for
vetting its source code—particular Yvette—lead to other projects being easier to eval-
uate collaboratively?

All of these questions are good ones, and it is hoped that they will be the subject of
future research.

5.11 Summary In this chapter, we have evaluated the architecture via simulation, and demonstrated
that it scales to realistic sizes and performs well. We then described how to instrument
the sample application so it could be analyzed, and discussed qualitative and quantita-
tive data from a pilot deployment, which show that the application as fielded performs
acceptably, and provides guidance on how to improve it. We then investigated some
residual risks of the architecture and the application, including some exploration of
how to defend against attacks that we declared to be outside of our original threat
model. We have speculated on the methods that might be required to motivate busi-
ness users to adopt the technology, despite current financial incentives to the contrary.
Finally, we briefly mentioned some intriguing directions for future work.
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Figure 17: Simulation results. See text for details.
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CHAPTER 6 Related Work

6.1 IntroductionWe have presented a general architecture and a sample application, and some evalua-
tion of them, designed to promote a particular sociopolitical agenda and to demon-
strate that starting with such an agenda can lead to technological advances. Let us
now turn our attention to related work in some relevant fields.

This research touches on a large number of possible topics. We shall restrict ourselves
here to examining:

Section 6.2• Other types of matchmaking systems

Section 6.3• Other decentralized systems

Section 6.4• Other systems and software that have been designed for political purposes

6.2 MatchmakersIn general, systems that perform any sort of matchmaking task are centralized sys-
tems. Such an organization has several useful advantages, especially to the implemen-
tors of such systems, if they do not also have to deal with personal information:

Why centralization is a 
popular approach

• They are easier to administer—all, or almost all, of the relevant software can run
on hosts directly under the administrative control of the implementors

• If they are being used for a business, it is often obvious how to structure the system
such that users may be charged fees, or have advertising delivered to them as they
use the system

• If the business model of the matchmaker also requires that personal information be
reused for other purposes—such as marketing—then centralizing all data on the
company’s own servers makes this easy.

Collaborative filteringWebhound/Webdoggie [103] and HOMR/Ringo/Firefly [112], for example, are typi-
cal examples of centralized matchmakers. A central server maintains information
about user interests, and users connect to the server (in both cases, with web brows-
ers) to discover whether they have a match. Both systems require the user to be proac-
tive in establishing and maintaining an interest profile, although Webhound/
Webdoggie also obtained leverage by using a data source the user already kept
updated, namely his or her hotlist.
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Brokering services Kuokka and Harada [99][100] describe a system that matches advertisements and
requests from users and hence serves as a brokering service. Also a centralized server,
their system assumes a highly-structured representation of user interests.

Sixdegrees Sixdegrees [110] is an interesting idea in matchmaking, generally for professional
reasons; this site keeps track of who you already know and uses this information to
find minimal spanning trees to others who you would like to know. It does this by ask-
ing for email addresses corresponding to others that you know, and also for their rela-
tionships to you (as well as other information, such as their profession), and then
contacts those people to see if they agree. If they do not repudiate the relationship, the
system records the correspondence. Users are always identified; unlike most other
systems, there are no pseudonyms. Users can then ask queries such as, “Who do I
know who knows a lawyer?” 

The system is somewhat cumbersome because of the need to involve everyone explic-
itly (anyone you name must take the effort to become a member themselves), but its
narrow targeting of social relationships makes it likely to find interesting contacts. It
is, of course, another centralized system, although it takes certain efforts both to reas-
sure its users that their information will remain private—although, of course, they
make no assurances about either crackers or subpoenas— and that the system cannot
easily be gamed to expose large numbers of relationships—for example, you can only
find out about the relationships of other people to people you already know, out to a
very limited diameter, and can only spam those you already know, which is presum-
ably not very productive.

PlanetAll PlanetAll [150] takes a somewhat different approach. It concentrates on finding peo-
ple you once knew, rather than on finding new people you might like to know. Like
Sixdegrees, it is a centralized, web-based service, and everyone using the service is
identified by their real name. Unlike Sixdegrees, the primary organizing principle
behind PlanetAll is affinity groups. Such groups are prespecified, named entities cor-
responding to organizations in the real world—not online—of which the user was at
one time a member. They are typically schools, clubs, or religious organizations, and
PlanetAll allows one to search for them by keyword. When registering, the user spec-
ifies affinity groups, and is then notified when others join the group. He or she can
send messages into the group or to particular individuals.

Spamming is prohibited by the rules of service, and, since individuals are always
strongly identified, tracking them down and barring them is easy. On the other hand, it
is not clear what would happen if someone who was never part of some affinity group
in real life were to join one anyway—such a party crasher would probably simply be
tolerated, as least if he or she was not obnoxious, because everyone else in the group
might assume that someone knew them.

One can also tell PlanetAll about particular individuals in the system and ask it to
send mail when that individual’s information (such as work address) changes. It is
presumed that individuals already know each other when they receive notification of
one joining the group—thus, PlanetAll concentrates on finding people after one has
lost track of them, rather than on describing unknowns to each other. PlanetAll also
has a number of other interesting features. For example, it allows users to enter their
travel itineraries, and will notify them when their paths cross in foreign cities.

As with Sixdegrees, PlanetAll users must trust that the central site will protect their
personal information. Since such information could be valuable to a number of com-
mercial interests, and also to those contemplating identity theft, this could be a major
exposure.
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Romantic matchmakersAlthough romantic matchmaking is not an explicit goal of Yenta, there are a large
number of matchmaking systems specialized for this application, and they are worth
studying. Such systems appear to be invariably centralized. For example, Match.Com
[41] is a straightforward romantic-matchmaking service. Users fill out a form detail-
ing their own characteristics and those of people they would like to meet (sex, age,
geographic location, etc.), which are used in a simple match/filter algorithm; they also
post personal ads to supply more detail once a user’s filter has selected some ads.
Similarly, the Jewish Matchmaker [43] (unfortunately also called Yenta, for obvious
reasons) is one of several more-specialized systems that function similarly: surveys
for filtering, personals for secondary selection, and a centralized server, all backed up
by a web-based interface.

A rare decentralized 
example

Kautz, Milewski, and Selman [91] are one group, of very few, to have taken a more
distributed approach to matchmaking. They report work on a prototype system for
expertise location in a large company. Their prototype assumes that users can identify
who else might be a suitable contact, and use agents to automate the referral-chaining
process. They include simulated results showing how the length and accuracy of the
resulting referral chains are affected by the number of simulated users and the accu-
racy and helpfulness of their recommendations. Yenta differs from this approach in
using ubiquitous user data to infer interests, rather than explicitly asking about exper-
tise. In addition, Yenta assumes that the individuals involved probably don’t already
know each other, and may have interests that they wish to keep private from at least
some subset of other users.

6.3 Decentralized 
systems

There are a variety of other decentralized systems that bear consideration here. For
the most part, these systems may be divided by their underlying metaphors: biologi-
cal, market-based, or other. We shall discuss all three below.

Both biological and market-based systems are often used in the allocation of scarce
resources, although with a difference in emphasis. For example, biological systems
often model individual actors or agents through their births, lives, and deaths. It is
commonly assumed that the characteristics of agents change relatively slowly over
their lifetimes, but that an entire population may change through evolution. Individual
agents generally have very limited models of the world and sometimes vanishingly
small reasoning abilities. Market-based systems, on the other hand, tend to assume
agents which exist for indefinite spans of time, but can change their behavior rela-
tively quickly due to learning within an agent. In addition, information flows—as
opposed to flows of matter—are often considered to dominate the interaction, and
explicit negotiation between agents with high levels of reasoning are common.

Biological metaphorsThe artificial life approach is explicitly informed by a biological metaphor [94]. This
discipline tends to model systems as small collections of local state that have gener-
ally been mapped into a simulation of some physical space. Within this space, these
bundles of state may interact solely through local interactions—there is no action at a
distance. Systems modeled often tend also to simulate real biological systems, albeit
simplified versions—ant and termite colonies [142], predator/prey systems and vari-
ous simulations of Darwinian or Lamarckian evolution [19][102], learning [57][62],
immune systems [95], and many more. Some simulate decidedly nonbiological sys-
tems using biological metaphors—for example, many problems in optimization are
often effective solved using genetic algorithms [96]; for example, producing optimal
sorting networks [79].

The choice of self-contained bundles of state, and strictly local communication, stems
naturally from systems which either simulate or are inspired by the natural world,
where nonlocal effects tend to be rare. Most such systems run on uniprocessors, but
there are exceptions. For example, many learning [62] or simulated-evolution [165]
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systems have been implemented on SIMD or MIMD architectures such as the CM-2
or CM-5 Connection Machines from Thinking Machines. Others have been distrib-
uted to collections of uniprocessors connected via the Internet. One example is NetTi-
erra [139], a network-based implementation of the original Tierra [138], a system
originally written to explore the evolution of RNA-based life via an easy-to-mutate
machine language.

Market-based metaphors Market-based approaches tends to use negotiation, barter, and intermediate represen-
tations of value—such as money—to enable a collection of actors to decide on indi-
vidual strategies [25][111]. One example of such a system is Harvest [74], which uses
a decentralized collection of gatherer, broker, collector, and cache elements to greatly
improve the performance of, e.g., web servers. Element use market-based ideas to
decide how to allocate various resources such as storage or bandwidth.

Consider also a system in which we have a heap, such as that found in a Lisp system,
where objects point at each other. Reclaiming unused space in a heap is called gar-
bage collection, and doing so if the heap spans multiple machines can be quite slow
due to communications overhead. Using a market-based approach, in which storage
essentially pays rent and storage which runs out of money is deallocated [40] can
make this problem much more tractable by keeping almost all the computation
required local to individual machines.

Other approaches Not all decentralized systems necessarily require either competition or cooperation
between agents—some simply use decentralization to achieve pure parallelism, turn-
ing a network of uniprocessor CPU’s into an emulation of a MIMD multiprocessor.
One common example of this these days is cryptographic key cracking [32], in which
thousands of CPU’s participate in searching the keyspace of a particular encrypted
communication. This application is typically political in nature—in general, partici-
pants take part in order to help demonstrate that ciphers such as 56-bit DES are woe-
fully insecure [15][24][34][42][76][184].

6.4 Political 
software and systems

Let us now examine various software systems that have been designed with a particu-
lar eye towards their political environment. We will concentrate here only on systems
which attempt to advance what we believe to be the socially responsible position in
our political argument—and not, for example, systems such as the centralized Intelli-
gent Transportation Systems described in Section 1.4.

Pretty Good Privacy By far the most famous example of such software is Pretty Good Privacy, or PGP
[187]. PGP is one of the most widely-used strong-cryptography packages in the
world. Recent versions have even been deliberately exported from the United States,
even though doing so electronically is illegal. Instead, the First Amendment to the US
Constitution was exploited as a loophole—it has already been determined that printed
books are not subject to regulation under US export-control law. Thus, source code
was printed into a ten-volume book, which is legal to export, in a format that was
explicitly designed to be easy to scan and convert back into electronic form overseas.
(Since then, other important cryptographic efforts have been exported in the same
way—for example, all of the VHDL and loader code describing how to build a hard-
ware DES-cracking machine was printed in machine-scannable form expressly to
allow this [42].)

PGP’s development was motivated by explicitly political aims—its author, Philip
Zimmerman, wrote it to make strong cryptography easily available to the masses, or
at least to those masses who owned personal computers. And since then, it has
become a lightning rod for discussion concerning US cryptographic-export policy.

PGP itself does not depend on any sort of network infrastructure—it encrypts and
decrypts files only. However, it is most useful when combined with a network, rather



113

than when being used to mail encrypted floppies back and forth. Various popular
mail-handling programs, such as Eudora for Macs and PC’s, and Mailcrypt for GNU
Emacs, have incorporated it into their design.

Anonymous remailersOther political software has made the network a more explicit part of their design.
Consider anonymous remailers [10][23][66], which are designed to hide the origin
and destination of messages being sent from one computer to another. They work by
encrypting messages in transit, and routing them through a large number of computers
in various political domains. The assumption is that no single entity could success-
fully compromise every computer and every network link in the chain, and that this
lack of total surveillance will allow truly-anonymous information exchange.

The contents of such messages are varied. Many concern topics which are potentially
embarrassing or dangerous to those discussing them, such as unusual lifestyles, or
discussion of medical problems such as HIV which might cause the discussant to lose
his or her job or social standing. Others are explicitly political in nature, sent by peo-
ple living in regions where political dissent can lead to imprisonment or execution
[11].

anon.penet.fiOne particularly famous remailer was the anon.penet.fi remailer [77], run by Johan
Helsingius. This service offered single-hop anonymity—messages sent to this
remailer had identifying information stripped out, but were then delivered as usual to
their destination. This made it particularly easy to use without the special software
often required of multihop Mixmaster [10][23][66] remailers. It also offered nyms—
one could have a stable, pseudonymous identity through the use of this service, rather
than being completely anonymous. Anyone could reply to a message posted through
anon.penet.fi, back to the original author, even though both parties would not know
each other’s actual identities.

This mechanism also led to a certain amount of insecurity. For example, in one well-
publicized case in 1995, the Church of Scientology was able to get the local govern-
ment in Finland to subpoena the site’s operator for the mapping between one particu-
lar nym and the real email address of the person behind it. In 1996, the Church tried to
determine if a particular individual had ever used the service. The site was eventually
shut down by its operator, who cited the increasing load on his time that running it
required, and the availability of at least partial substitutes elsewhere on the net.

The AnonymizerConsider now the Anonymizer, which attempts to make it possible to fetch web pages
without informing the web server of the identity of the machine doing the fetching—
presumably for use in reading pages with controversial content, or to deny marketers
the ability to target the reader for profiling. It is a single, centralized server, and sim-
ply proxies requests through itself, rewriting HTML links such that following a link
on a fetched page will go back through the Anonymizer. While it can effectively hide
users from sites, it is useless against traffic analysis attacks—it operates at a single,
well-known address and from a single point of presence. This makes its communica-
tions easy to tap, either at the site or by looking for requests from a given user to the
Anonymizer itself. Even if SSL is in use, thus hiding the actual URL’s being
requested and the contents of the pages returned, traffic analysis at the user’s site can
instantly reveal that the Anonymizer is in use at all, and even this is often sufficient to
target the user for various unfortunate consequences. Further, sites which offer con-
tent may deliberately deny content to the Anonymizer, to force users to come from
well-identified IP addresses. Finally, users of the Anonymizer must trust that the site
really is honoring its stated policies of not keeping logs of the traffic through itself.

CrowdsA more-sophisticated system, developed after the Anonymizer, is the Crowds system
[141]. This system is also an attempt to strip identifying information from web surf-
ers, and uses decentralization to foil traffic analysis. Participating users join a
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crowd—a collection of other machines, all of which participate in the system, and
which randomly reforward HTTP requests and responses among themselves before
sending them to their final destinations. This means that any particular web page
fetched by a user could come from any of the participating machines at random,
hence denying the web server the ability to know precisely who is fetching which
pages.

This system is explicitly aware of the problems of traffic analysis, both at the web
server itself and in the intervening links between that server and the user, and takes
steps to foil it. It also reduces the problems of trusting the privacy policy of a single
site.

Web filters Web-filtering programs grew directly out of political concerns—they are software
packages which are deliberately designed to block content from particular users, gen-
erally minors and anyone else who might be coerced into using them, such as library
patrons in some cases. Some of them, such as RSACi [140], rely on self-ratings by
sites. Others, such as PICS [177], rely on third-party ratings. These third-party ratings
may be either public, and possibly distributed, or provided by the manufacturer of the
filtering software, and often private.

Since someone must choose which sites are acceptable and which are not, there is an
implicit political agenda to using such software. Even systems which claim to allow
the user to select any other third party’s recommendations may be abused given
enough control of the network infrastructure. For example, China carefully controls
traffic across its borders, and could insist that all web surfers use only government-
approved PICS sites for their filter lists. In addition, those systems in which the ven-
dor of the filtering software choose are often extremely heavy-handed about what
sorts of sites are deemed unacceptable. In response to this, Bennett Haselton [75] has
spent considerable time and effort exposing the antics of filter manufacturers who
claim to be blocking “sexual content” but are also blocking a wide variety of nonsex-
ual web sites that happen to have politics that the filter vendors find unacceptable. The
list of sites blocked by these packages are secret, ostensibly for reasons of competitive
commercial advantage, but this means that there is virtually no oversight for what
often turns into an appalling censorial exercise.

FSF and Open Source Finally, let us consider an intellectual property methodology, as opposed to particular
systems or programs. The methodology of interest is the union of the Free Software
Foundation and the more-recent Open Source movement. Both of these approaches
view freely-redistributable software as a social good. While they differ on the details
of what this means and how to achieve it, they are in substantial agreement that the
freedom to examine and modify source code is the cornerstone of building high-qual-
ity software. Many famous examples of their effort exist, such as the GNU collection
of hundreds of utility programs—Emacs, autoconf, automake, gtar, gmake, and all the
rest—and other projects which use their licensing terms but were not written by the
FSF—such as Linux, SCM, and so forth.

Both the FSF and the Open Source group have an explicit political agenda, which
they enforce through the technology of copyright and contract law. Thus, their tech-
nology is that of intellectual property per se, rather than that of software itself. Their
efforts have had an enormous effect on the way that software is currently developed,
especially—but not exclusively—that which runs under various varieties of UNIX,
and is likely to leave a considerable legacy.

6.5 Summary In this chapter, we have touched briefly upon matchmakers, decentralized systems,
and politics. All three of these fields are assuming increasing importance as the Inter-
net continues to expand and its user base continues to grow. The research that led to
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Yenta and its underlying architecture did not arise from the vacuum. Instead, it is
explicitly informed from—and, in some cases, in reaction to—some of the existing
systems and methods of practice currently popular in the field.
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CHAPTER 7 Conclusions

In Chapter 1, we presented a rationale for the particular agenda—personal privacy—
that drove the architectural design in Chapter 2, the security issues addressed in
Chapter 3, and the sample application in Chapter 4. In Chapter 5, we demonstrated
that the result appears to meet its design goals without forcing privacy and functional-
ity to be traded off against each other. Finally, in Chapter 6, we investigated some
work related to this research, exploring other matchmakers, decentralized systems,
and explicitly political systems. In this chapter, we shall draw some general conclu-
sions about the work presented here.

We have demonstrated that starting from a social or political agenda can have wide-
ranging effects on how technology is designed. This research has shown that carefully
protecting the personal privacy of users in a broad class of applications can lead to a
design which is technically superior in several respects—indeed, the decentralized
nature of the design, its reliance on strong cryptography, and many other design ele-
ments seemed inevitable once the underlying agenda was chosen. The result indicates
that, for a large class of potential applications, protecting privacy does not necessarily
require that one make a tradeoff between privacy and either robustness or functional-
ity.

It is hoped that the widespread availability of this research will lead to commercial
and legislative chnages in several viewpoints, including

• the relation of technology to issues of personal privacy, and

• the utility of strong cryptography.

This is, after all, the fundamental goal of the research—while Yenta is an important
and useful application, and while its use can serve as both an advertisement for the
underlying concepts and also help solve real problems for real users, it is the architec-
ture and the rationale for its development which are the most important issues here.

As discussed in Section 5.9, one of the enduring issues concerns getting those with
financial incentives in their users’ lack of privacy to adopt the technology discussed
here. The Yenta application itself, by serving as an example and by raising awareness
of the issues, may help in this regard. However, it is only the first step along a long but
ultimately rewarding path.
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